Project description:To explore the influence of choline intake and pregnancy status on gene expression, we employed whole genome microarray expression profiling to identify genes that were differentially expressed between two choline intake groups and between pregnant and non-pregnant women. Healthy third trimester (gestational week 26-29) pregnant women and non-pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6 pregnant and n=5 non-pregnant) or 930 (n=6 pregnant and n=5 non-pregnant) mg choline/d. Fasting peripheral blood leukocyte samples were collected at week 0 and week 12 to extract RNA and perform the arrays. Healthy third trimester (gestational week 26-29) pregnant women and non-pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6 pregnant and n=5 non-pregnant) or 930 (n=6 pregnant and n=5 non-pregnant) mg choline/d for 12 weeks. Fasting (10-h) peripheral blood leukocyte gene expression were measured at week 0 and week 12.
Project description:To explore the influence of maternal choline intake on placental gene expression, we employed whole genome microarray expression profiling to identify genes that were differentially expressed in placental tissues obtained from women consuming two different doses (480 vs. 930 mg/d) of choline throughout the third trimester of pregnancy. Healthy third trimester (gestational week 26-29) pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6) or 930 (n=6) mg choline/d. Full thickness placental samples were collected at delivery to extract RNA and perform the arrays. Healthy third trimester (gestational week 26-29) pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6) or 930 (n=6) mg choline/d for 12 weeks. Placental samples were obtained at delivery
Project description:Maternal serum levels of calcyclin and heat shock protein 90 were compared throughout pregnancy from the first trimester till term among women with preeclampsia (PE) and age-matched normotensive pregnant controls (C). Serum samples from two different studies, a nested case-control study embedded in the Rotterdam periconception cohort and the Lepra Study both conducted at the Erasmus MC in Rotterdam. They were collected in the first, second and third trimester of pregnancy in 43 patients with preeclampsia, consisting of 20 early-onset and 23 late-onset preeclampsia, and 46 normotensive pregnant controls. A serum based 2D LC-MS assay on Parallel Reaction Monitoring mode using a high resolution tribrid mass spectrometer was used to quantify both calcyclin and heat shock protein 90.
Project description:To explore the influence of choline intake and pregnancy status on gene expression, we employed whole genome microarray expression profiling to identify genes that were differentially expressed between two choline intake groups and between pregnant and non-pregnant women. Healthy third trimester (gestational week 26-29) pregnant women and non-pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6 pregnant and n=5 non-pregnant) or 930 (n=6 pregnant and n=5 non-pregnant) mg choline/d. Fasting peripheral blood leukocyte samples were collected at week 0 and week 12 to extract RNA and perform the arrays.
Project description:To explore the influence of maternal choline intake on placental gene expression, we employed whole genome microarray expression profiling to identify genes that were differentially expressed in placental tissues obtained from women consuming two different doses (480 vs. 930 mg/d) of choline throughout the third trimester of pregnancy. Healthy third trimester (gestational week 26-29) pregnant women were randomized to a 12-week choline controlled feeding study. The participants consumed either 480 (n=6) or 930 (n=6) mg choline/d. Full thickness placental samples were collected at delivery to extract RNA and perform the arrays.
Project description:Gestational diabetes (GDM) refers to diabetes diagnosed as diabetes in the second or third trimester of pregnancy, but not obvious before pregnancy. It is one of the most common complications of pregnancy, which can lead to perinatal asphyxia, neonatal hypoglycemia, macrosomia, cardiovascular abnormalities, obesity and other short-term and long-term adverse outcomes of the offspring. This study explores the differential expression of transcriptome between GDM and non GDM placenta, and explores the impact of subtle metabolic changes in the placenta on fetal growth and development during GDM in pregnant women.
Project description:This prospective study is to find changes in salivary protein expressions from first to early third trimester of pregnancy in normal term birth using SWATH-MS strategy. Saliva at three periods of gestation, 6-13 (V1), 18-21(V2), and 26-29 (V3) weeks from 20 singleton pregnant women were used in a discovery phase. Selected proteins from the discovery study were verified by targeted schedule-MRM (multiple reaction monitoring) experiments in a separate subset of subjects (N=14). Using in-house generated saliva-specific protein library, 65 proteins (q-value<0.1) changed as a function of gestational age.
Project description:Objectives: Arterial hypertension (AH) influences salivary gland physiology and oral health, being associated with a higher incidence of periodontal disease in pregnant women. Evidence points to a bidirectional relationship between the oral microbiota and blood pressure regulation. Therefore, this study aimed to characterize the oral health of pregnant women and AH-associated changes in the salivary proteome and microbiome during pregnancy and postpartum. Design: Ten healthy women and ten women with AH were enrolled. Saliva was collected during pregnancy and six months postpartum. The salivary proteome was characterized by shotgun label-free mass spectrometry analysis. Specific proteins were validated through parallel reaction monitoring (PRM). The oral microbiota was characterized via 16S rRNA gene amplicon sequencing (V4 region). The periodontal health and the caries history was assessed during pregnancy. Results: Pregnant women with AH had lower junction plakoglobin (JUP)- and desmoplakin (DSP)-specific peptide levels than healthy women, confirmed by the PRM approach. The levels of these proteins correlated negatively with periodontal health indexes, which were higher in pregnant women with AH. In AH, nitrate-reducing microorganisms had lower abundance, correlating positively with JUP and DSP-specific peptides. Conclusions: The salivary proteome and microbiota are shaped by AH during and after pregnancy. Further research is required to understand the underlying mechanisms impairing oral health in AH. Data acquisition has been supported by EPIC-XS, project number 393, funded by the Horizon 2020 program of the European Union and the National Institute for Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107) and the MEYS/EU project OP JAK-MULTIOMICS_CZ - Multi-omics platform for the search for biological correlates of diseases and the development of new diagnostic, preventive and therapeutic procedures (CZ.02.01.01/00/23_020/0008540).
Project description:Epigenetics may play a central, but yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy. We investigated changes in the methylome in isolated circulating CD4+ T cells in non-pregnant and pregnant women, during the 1st and 2nd trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with thousands of methylation differences, particularly during the 2nd trimester, where the majority of sites were hypermethylated, indicating transcriptional repression. Using a network-based modular approach disclosed several genes and pathways related to T cell signalling and activation. The pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. The directionality of the changes was also in line with the previously observed effect of pregnancy on the disease activity, with a negative correlation for multiple sclerosis and rheumatoid arthritis that improves during pregnancy, and a positive correlation for systemic lupus erythematosus, a disease that instead worsens. In summary, this systems medicine approach supports the importance of the methylome in immune regulation of CD4+ T cells during pregnancy. Samples included twelve (n=12) non-pregnant women, elven (n=11) 1st trimester pregnant women and twelve (n=12)