Project description:TGF-β-SMAD signaling pathway plays an important role in progression of various tumors. However, posttranscriptional regulation such as N6-methyladenosine (m6A) of TGF-β-SMAD signaling axis remains incompletely understood. Here, we reveal that Insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) is low expression as well as associated with poor prognosis in clear cell renal cell carcinoma (ccRCC) patients and inhibits proliferation as well as promotes metastasis of ccRCC cells. To explore the underlying mechanism of IGF2BP2 in ccRCC, RNA-seq, RIP-seq and LACE-seq were performed to investigate the downstream targets of IGF2BP2.
Project description:TGF-β-SMAD signaling pathway plays an important role in progression of various tumors. However, posttranscriptional regulation such as N6-methyladenosine (m6A) of TGF-β-SMAD signaling axis remains incompletely understood. Here, we reveal that Insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) is low expression as well as associated with poor prognosis in clear cell renal cell carcinoma (ccRCC) patients and inhibits proliferation as well as promotes metastasis of ccRCC cells. To explore the underlying mechanism of IGF2BP2 in ccRCC, RNA-seq, RIP-seq and LACE-seq were performed to investigate the downstream targets of IGF2BP2.
Project description:TGF-β-SMAD signaling pathway plays an important role in progression of various tumors. However, posttranscriptional regulation such as N6-methyladenosine (m6A) of TGF-β-SMAD signaling axis remains incompletely understood. Here, we reveal that Insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) is low expression as well as associated with poor prognosis in clear cell renal cell carcinoma (ccRCC) patients and inhibits proliferation as well as promotes metastasis of ccRCC cells. To explore the underlying mechanism of IGF2BP2 in ccRCC, RNA-seq, RIP-seq and LACE-seq were performed to investigate the downstream targets of IGF2BP2.
Project description:Cytokines of the TGF-β superfamily control essential cell fate decisions via receptor regulated SMAD (R-SMAD) transcription factors. Ligand-induced R-SMAD phosphorylation in the cytosol triggers their activation and nuclear accumulation. We determined how R-SMADs are inactivated by dephosphorylation in the cell nucleus to counteract signaling by TGF-β superfamily ligands. We showed that R-SMAD dephosphorylation is mediated by an inner nuclear membrane associated complex containing the scaffold protein MAN1 and the CTDNEP1/NEP1R1 phosphatase. Structural prediction, domain mapping and mutagenesis revealed that MAN1 binds independently to the CTDNEP1/NEP1R1 phosphatase and R-SMADs to promote their inactivation by dephosphorylation. Disruption of this complex led to nuclear accumulation of R-SMADs and aberrant signaling, even in the absence of TGF-β ligands. These findings establish CTDNEP1/NEP1R1 as the elusive R-SMAD phosphatase and reveal the mechanistic basis for TGF-β signaling inactivation and how this process is disrupted by disease-associated MAN1 mutations.
Project description:The non-receptor tyrosine kinase SRC is upregulated in various human cancers and plays crucial roles in cancer progression by promoting invasion and metastasis. We show that the transforming growth factor beta (TGF-β/SMAD pathway directly upregulates SRC during the epithelial-mesenchymal transition. In human epithelial MCF10A cells, TGF-β1 treatment markedly upregulated mRNA expression of SRC. Knockout of SMAD4 suppressed upregulation of SRC by TGF-β1. ChIP-sequencing analysis revealed that SRC was transcribed from the SRC1A promoter, which interacted with SMAD2 and SMAD4, in response to TGF-β1. These findings demonstrate that a direct interaction of the activated SMAD complex with the SRC1A promoter directly upregulates SRC and suggest that TGF-β contributes to SRC upregulation in the tumor microenvironment, where TGF-β-mediated tumor progression takes place.
Project description:TGF-b is an important pleiotropic cytokine with potent immunoregulatory properties. Although many previous reports have been proposed for the immunoregulatory functions of TGF-b on T cells, such as the suppression of cell proliferation, cytokine production and cytokine signaling, as well as the induction of apoptosis, it is not well elucidated whether the each effect of TGF-b on T cells is dependent on Smad signaling or Smad-independent other signaling pathways. The aim of the study was to clarify the involvement of Smad signaling and to investigate the redundancy of Smad2 and Smad3 on various TGF-b-mediated regulation of gene expression in CD4+ T cells. We used microarrays to detail the global program of gene expression regulated by TGF-b in CD4+ T cells, and identified distinct classes of up/down-regulated genes which are dependent on or independent of TGF-b-Smad signaling. Most of genes regulated by TGF-b were redundantly dependent on Smad2 and Smad3, including Foxp3 and IL-2. In addition, some genes were sufficiently regulated via Smad2 or Smad3 signaling alone. In contrast, TGF-b-mediated RORgt induction was independent of Smad signaling. CD4+CD25-CD44loCD62Lhi T cells (naive) were isolated from the spleens in wild-type (WT), T cell-specific Smad2 conditional knockout (Smad2KO or Smad2del/del), Smad3 knockout (Smad3KO or Smad3-/-) or Smad2del/delSmad3+/- mice by using a BD FACS ariaTM cell sorter (BD Bioscience) (purity: >98%). Freshly purified cells were then stimulated with anti-TCR stimuli in the absence or presence of TGF-b for 24 hr, respectively. A complete and precise experimental procedure is given in the "treatment protocol". It was very difficult to obtain the enough number of CD4+CD25-CD44loCD62Lhi naive T cells from Smad2del/delSmad3-/- mice because alomost all of CD4+ T cells were activated in Smad2del/delSmad3-/- mice. We confirmed that the several known Smad-regulated genes were almost out of control in Smad2del/delSmad3+/- CD4+ T cells by using quantitative RT-PCR. Furthermore, previous studies have reported the similar results in other cell types deficit in two alleles of Smad2 and one allele of Smad3. For these reasons, we substituted Smad2del/delSmad3+/- naive T cells for Smad2/3-deficient naive T cells. Cells were quickly collected 24 hr after culture for RNA extraction and hybridization on Affymetrix microarrays.
Project description:TGF-b is an important pleiotropic cytokine with potent immunoregulatory properties. Although many previous reports have been proposed for the immunoregulatory functions of TGF-b on T cells, such as the suppression of cell proliferation, cytokine production and cytokine signaling, as well as the induction of apoptosis, it is not well elucidated whether the each effect of TGF-b on T cells is dependent on Smad signaling or Smad-independent other signaling pathways. The aim of the study was to clarify the involvement of Smad signaling and to investigate the redundancy of Smad2 and Smad3 on various TGF-b-mediated regulation of gene expression in CD4+ T cells. We used microarrays to detail the global program of gene expression regulated by TGF-b in CD4+ T cells, and identified distinct classes of up/down-regulated genes which are dependent on or independent of TGF-b-Smad signaling. Most of genes regulated by TGF-b were redundantly dependent on Smad2 and Smad3, including Foxp3 and IL-2. In addition, some genes were sufficiently regulated via Smad2 or Smad3 signaling alone. In contrast, TGF-b-mediated RORgt induction was independent of Smad signaling.