Project description:Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20OX1-OE plants exhibits partially additive effects but is similar to the aba2 mutant. Consistent with this result, transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20OX1-OE plants overlaps and shares a similar pattern to the aba2 mutant. Thus, these data support that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway in the regulation of leaf growth. To better understand the molecular basis of ABA and GA interaction, transcriptome analysis was performed among the genotypes used in this study.
Project description:High salinity is one of the major environmental factors, which hampers plant growth, development and productivity. To better understand the regulatory mechanisms by which plants cope with salt stress, we used genetic approaches to identify salt hypersensitive mutant 9 (sahy9), a new allele of apum23, in Arabidopsis thaliana. The sahy9/apum23 mutant seedlings display postgemination developmental arrest and later become bleached under agar plates supplemented with various salt stressors. Transcriptomic and proteomic analyses of the salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes with similar functional categories, primarily including cellular and metabolic processes, and abiotic and biotic stress responses. However, the consistency of gene expression at both transcript and protein levels is low (), suggesting the involvement of posttranscriptional processing in salt response. Furthermore, the altered gene/protein expression mediated by SAHY9/APUM23 in salt sensitivity is involved in several functional groups, particularly in ABA biosynthesis and signaling, abiotic stress response, LEA proteins, and ribosome biogenesis-related genes. Importantly, NCED3, a key gene involved in ABA biosynthesis, and major ABA responsive marker genes, such as RD20 and RD29B, are down-regulated at both transcript and protein levels in sahy9/apum23 under salt stress. Consistently, lower contents of ABA and proline, and expression changes of a subset of LEA proteins also support the nature of sahy9/apum23 showing salt hypersensitivity. Collectively, these data suggest that SAHY9/APUM23-mediated salt response is associated with ABA signaling pathway and its downstream stress responsive or tolerant genes.