Project description:Urine sampled from preterm-born (<34 weeks gestation) school-aged (7-12yrs) children and term born (>/=37 weeks gestation). Spirometry, exercise testing and cardiovascular assessment performed at time of sampling. Preter-born children with low lung function entered a randomised placebo controlled trial of inhaler therapies.
Project description:Introduction: We investigated the role and mechanism of hsa-HLA-DRB1 in the development and progression of diabetic foot ulcers. Methods: High-throughput sequencing was performed on three normal foot trauma tissues and diabetic foot ulcer tissues. The circRNAs with significant differences were identified. The downstream miRNAs were predicted by miRanda and RNAhybrid databases, and the mRNAs were predicted by the TargetScan database. Validation was performed with CCK8, flow cytometry, trabecular scratch assay, tubule generation assay, Western blot, dual luciferase assay, and RT-qPCR. Results: High-throughput sequencing identified 461 significantly different circRNAs, of which 260 were up-regulated and 201 down-regulated. Compared to normal tissue, hsa-HLA-DRB1 was highly expressed in diabetic foot ulcers. The hsa-HLA-DRB1/miRNA_12118/FLT-1 axis was constructed. In vitro, we found that HLA-DRB1 overexpression inhibited cell viability, wound healing, and tubule formation, promoted apoptosis, and enhanced FLT-1 expression in HUVECs. Conclusion: The upregulation of hsa-HLA-DRB1 may promote diabetic foot development by targeting miRNA_12118 and acting on FLT-1. Therefore, our study highlights the key role of the hsa-HLA-DRB1/miRNA_12118/FLT-1 axis in diabetic foot trauma.
Project description:Circular RNA (circRNA) microarray analysis was performed to examine the expression profiles of circRNAs in diabetic foot ulcers (DFU) and in human excisional skin wounds 7 days after injury.
Project description:Diabetic foot ulcers (DFUs) are a devastating complication of diabetes. To better understand the molecular mechanisms and cell types implicated in DFU healing, we used NanoString’s GeoMx Digital Spatial profiling platform on DFU tissue sections and compared gene expression of areas within the same ulcer as well as between patients who in 12 weeks following surgery healed their DFU (Healers, N=2) vs those who did not (Non-Healers, N=2).
Project description:Diabetic foot ulcers (DFUs) are a devastating complication of diabetes. In order to identify systemic and local factors associated with DFU healing, we examined the cellular landscape of DFUs by single-cell RNA-seq analysis of foot and forearm skin specimens, as well as PBMC samples, from 10 non-diabetic subjects, and 17 diabetic patients, 11 with, and 6 without DFU. Our analysis shows enrichment of a unique inflammatory fibroblast population in DFU patients with healing wounds. The patients with healing DFUs also depicted enrichment of macrophages with M1 polarization, as opposed to more M2 macrophages in non-healing wounds. These findings were verified using Immunohistochemistry and Spatial Transcriptomics.
Project description:Objective: This study aims to investigate the diversity of fibroblasts present in diabetic ulcers and their impact on the wound healing process, as well as to evaluate the effectiveness of Platelet-Rich Plasma (PRP) therapy in the management of diabetic ulcers. Methodology: The single-cell dataset GSE165816 from the GEO database was utilized to analyze DFU-healer and DFU-nonhealer samples in order to evaluate variations in fibroblasts. Functional characteristics of fibroblasts were investigated through analyses of cell communication, transcription factors, and pseudotime analysis. Additionally, a diabetic ulcer rat model was established to compare the therapeutic effects of PRP, followed by histological and transcriptomic sequencing analyses. Result: Single-cell sequencing analysis identified a greater abundance of fibroblasts in the group of diabetic foot ulcer (DFU) patients who exhibited healing. The findings from biological informatics analysis emphasized the critical role of fibroblasts in the wound healing process. Treatment with PRP notably enhanced wound healing in diabetic ulcers in rats, and transcriptomic analysis indicated that gene expression levels post-PRP treatment resembled those of the non-diabetic ulcer group, with a strong association to fibroblasts. Conclusion: Fibroblasts are essential in the process of healing diabetic ulcers, as certain transcription factors have the potential to facilitate wound closure. PRP therapy has been shown to enhance the healing process in diabetic ulcer rat models, possibly through the modulation of gene expression and the promotion of extracellular matrix arrangement. This research offers novel insights and potential therapeutic approaches for managing diabetic ulcers.
2024-11-11 | GSE280992 | GEO
Project description:Longitudinal profiling of microbiome of diabetic foot ulcers