Project description:Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas molecules such as methane (CH4). Despite the global importance of gas hydrates, their microbiomes remain mysterious. Microbial cells are physically associated with hydrates, and the taxonomy of these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites. Global 16S rRNA gene surveys show that members of sub-clade JS-1 of the uncultivated bacterial candidate phylum Atribacteria are the dominant taxa in gas hydrates. The Atribacteria phylogeny is highly diverse, suggesting the potential for wide functional variation and niche specialization. Here, we examined the distribution, phylogeny, and metabolic potential of uncultivated Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and metaproteomic analysis. Methods were developed to extract bacterial cellular protein from these sediments, as outlined below. Sample Description Three sediments samples were collected from beneath Hydrate Ridge, off the coast of Oregon, USA. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern summit on ODP Leg 204 in 2002 and stored at -80°C at the IODP Gulf Coast Repository. E10H5 sediment is from 68.5 meters below sediment surface interface C1H2 sediment is from 2 meters below sediment surface interface. C3H4 sediment is from 21 meters below sediment surface interface.
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoA-carrying AOA within these sediments.
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoAÂ-carrying AOA within these sediments. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Flounder fish were exposed in mesocosms for seven months to a contaminated estuarine sediment made by mixing material from the Forth (high organics) and Tyne (high metals and tributyltin) estuaries (FT) or control sediment from the Ythan estuary (Y). Their gene expression profiles were compatred by cDNA microarrays.