Project description:Cortisol was injected into the protogynous epinephelus coioides to investigate the role of this hormone on sex change. Following injection, we evaluated sex-related gene expression during the processes of cortisol-induced sex change in epinephelus coioides.
Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod subpopulation: western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through genome-wide oligonucleotide microarray.
Project description:Background: In coeliac disease (CoD), the role of B cells has mainly been considered to be production of antibodies. The functional role of B cells has not been analysed extensively in CoD. Methods: We conducted a study to characterize gene expression in B cells from children developing CoD early in life using samples collected before and at the diagnosis of the disease. Blood samples were collected from children at risk at 12, 18, 24 and 36 months of age. RNA from peripheral blood CD19+ cells was sequenced and differential gene expression was analysed using R package Limma. Findings: Overall, we found one gene, HNRNPL, modestly downregulated in all patients (logFC -0·7; q=0·09), and several others downregulated in those diagnosed with CoD already by the age of 2 years. Interpretation: The data highlight the role of B-cells in CoD development. The role of HNRPL in suppressing enteroviral replication suggests that the predisposing factor for both CoD and enteroviral infections is the low level of HNRNPL expression.
Project description:Fish in use in aquaculture display large variation in gamete biology. To reach better understanding around this issue, this study aims at identifying if “egg life history traits” can be hidden in egg transcriptomes. To pursue this, salmon and cod eggs were selected due to their largely differencing phenotypes (size, robustness, fresh/marine). An oligo microarray analysis was performed on ovulated eggs from cod (~23 000 genes, n=8) and salmon (~44 000 genes, n=7). The arrays were normalized to a similar spectrum for both arrays. Both arrays were re-annotated based on official gene symbol to retrieve an orthologous KEGG annotation, in salmon and cod arrays this represented 14009 and 7437 genes respectively. The probe linked to the highest gene expression for that particular KEGG annotation was used to compare expression between species. Differential expression was calculated for genes that had an annotation with score > 300, resulting in a total of 2354 KEGG annotations (genes) being differently expressed between the species. The most differentially expressed genes in salmon and cod (FD≥2), were used to reveal pathways that were overrepresented in the eggs of each species. This analysis revealed that immune, signal transduction, and excretory related pathways were overrepresented in salmon compared to cod. The most overrepresented pathways in cod were related to regulation of genetic information processing and metabolism. To conclude this analysis clearly point at some distinct transcriptome repertoires for cod and salmon and that these differences may explain some of the species-specific biological features for salmon and cod eggs.
Project description:Groupers (Epinephelidae) are ecologically, commercially, and culturally important predatory fishes throughout their global distribution range in tropical, subtropical and occasionally temperate regions. They are key species for modern and ancient fisheries in the Mediterranean which have been heavily overfished in the past century leading to smaller catch sizes, lower CPUE, and decreased biomass. There are four species of grouper native to the Mediterranean within the Epinephelus genus.The abundance and distribution of grouper species prior to the 20th century in the Mediterranean remains poorly known. Using peptide mass fingerprinting, also known as Zooarchaeology by Mass Spectrometry (ZooMS), we investigated if ZooMS is a viable method for identifying intra-genus grouper bones to species level. Due to the lack of publicly available genomic sequences and for validation of ZooMS markers, we reconstructed collagen type I amino acid sequences using LC-MS/MS for four Epinephelus spp. Adequate variation between collagen sequences enabled the production of the best supported phylogenetic tree for Mediterranean Epinephelus spp. to date. We identified 23 previously undescribed ZooMS biomarkers capable of distinguishing groupers to the species level. Our novel biomarkers were applied to a case study of 23 grouper/comber fish bones from the Middle to Late Holocene archaeological site of Kinet Höyük, located along the coast of Iskenderun Bay, Turkey. ZooMS markers enabled species level identification of 19 bones with 18 identified as Epinephelus aeneus and 1 identified as Epinephelus marginatus. Combining ZooMS identifications with catch size reconstructions has revealed that E. aeneus is capable of growing ca. 30 cm larger than previously reported. This abundance and dominance of E. aeneus locally at Kinet Höyük is consistent with E. aeneus being the most prevalent grouper species in Iskenderun Bay today, testifying to several millennia of this species local population persistence despite fishing pressure, habitat degradation, and climatic changes.