Project description:Estrogen receptor dependent genomic expression profiles in breast cancer cells in response to fatty acids. Estrogen receptor positive cells respond better to omega 3 treatments. two condition experiments: ER positive and negative breast cancer cells exposed to two fatty acids: omega-3 (eicosapentanoic acid) and 6 (arachidonic acid).
Project description:The integration between epigenetic regulation and metabolism is critical to maintain cellular homeostasis. As an epigenetic mark mainly linked to gene activation, histone crotonylation (Kcr) uses the donor of crotonyl-CoA, a metabolite generated primarily from fatty acid oxidation. Whether there is an intrinsic crosstalk between histone Kcr and fatty acid metabolism remains to be explored. We report here that YEATS family protein YEATS4 is a reader of histone Kcr preferentially towards H3K14cr. YEATS4 is amplified and overexpressed in breast cancer cells, mainly in the ER+ subtype. Integrative epigenomic and transcriptomic analyses reveals extensively overlapped chromatin distribution of YEATS4 with H3K14cr, leading to activation of multiple genes involved in fatty-acid trafficking and metabolism, such as CD36, CPT1/2, and ACOX1. Depletion of YEATS4 in breast cancer cells led to compromised fatty acid uptake and -oxidation. Interestingly, YEATS4 is upregulated in ALDH+ breast cancer stem cells, leading to boosted fatty acid metabolism, enhanced self-renewal, and accelerated tumor growth. Clinicalpathological evidence indicates that elevated YEATS4 expression is correlated with poor prognosis and worse overall survival of ER+ breast cancer patients. Together, our study uncovers a feedforward epigenetic-metabolic loop implicated in breast carcinogenesis, supporting the pursuit of YEATS4 as a potential therapeutic target for breast cancer intervention.
Project description:The majority of breast cancers (BCs) harboring estrogen receptor (ER) have shown endocrine resistance. Our previous study has demonstrated that ferredoxin reductase (FDXR) promotes mitochondrial function and ER+ breast tumorigenesis. Here, integrative analyses of targeted metabolomics assay and gene expression profiling show that FDXR potentiates fatty acid oxidation (FAO) through positive regulation of carnitine palmitoyltransferase 1A (CPT1A) expression. Treatment with ER antagonist (tamoxifen) or degrader (fulvestrant) leads to increased expression of FDXR and CPT1A. In line with this finding, we find that FDXR-CPT1A-FAO axis is required for primary and endocrine resistant breast cancer cell growth. Therapeutically,combining endocrine therapy with FAO inhibitor synergistically reduces primary and endocrine resistant breast cancer cell growth, thus providing a potential combinatory treatment for ER+ breast cancer. We used microarrays to be able to elucidate to some extent the gene regulatory mechanisms of FDXR regulating breast cancer metabolism.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.