Project description:Estrogen receptor dependent genomic expression profiles in breast cancer cells in response to fatty acids. Estrogen receptor positive cells respond better to omega 3 treatments. two condition experiments: ER positive and negative breast cancer cells exposed to two fatty acids: omega-3 (eicosapentanoic acid) and 6 (arachidonic acid).
Project description:The integration between epigenetic regulation and metabolism is critical to maintain cellular homeostasis. As an epigenetic mark mainly linked to gene activation, histone crotonylation (Kcr) uses the donor of crotonyl-CoA, a metabolite generated primarily from fatty acid oxidation. Whether there is an intrinsic crosstalk between histone Kcr and fatty acid metabolism remains to be explored. We report here that YEATS family protein YEATS4 is a reader of histone Kcr preferentially towards H3K14cr. YEATS4 is amplified and overexpressed in breast cancer cells, mainly in the ER+ subtype. Integrative epigenomic and transcriptomic analyses reveals extensively overlapped chromatin distribution of YEATS4 with H3K14cr, leading to activation of multiple genes involved in fatty-acid trafficking and metabolism, such as CD36, CPT1/2, and ACOX1. Depletion of YEATS4 in breast cancer cells led to compromised fatty acid uptake and -oxidation. Interestingly, YEATS4 is upregulated in ALDH+ breast cancer stem cells, leading to boosted fatty acid metabolism, enhanced self-renewal, and accelerated tumor growth. Clinicalpathological evidence indicates that elevated YEATS4 expression is correlated with poor prognosis and worse overall survival of ER+ breast cancer patients. Together, our study uncovers a feedforward epigenetic-metabolic loop implicated in breast carcinogenesis, supporting the pursuit of YEATS4 as a potential therapeutic target for breast cancer intervention.
Project description:The majority of breast cancers (BCs) harboring estrogen receptor (ER) have shown endocrine resistance. Our previous study has demonstrated that ferredoxin reductase (FDXR) promotes mitochondrial function and ER+ breast tumorigenesis. Here, integrative analyses of targeted metabolomics assay and gene expression profiling show that FDXR potentiates fatty acid oxidation (FAO) through positive regulation of carnitine palmitoyltransferase 1A (CPT1A) expression. Treatment with ER antagonist (tamoxifen) or degrader (fulvestrant) leads to increased expression of FDXR and CPT1A. In line with this finding, we find that FDXR-CPT1A-FAO axis is required for primary and endocrine resistant breast cancer cell growth. Therapeutically,combining endocrine therapy with FAO inhibitor synergistically reduces primary and endocrine resistant breast cancer cell growth, thus providing a potential combinatory treatment for ER+ breast cancer. We used microarrays to be able to elucidate to some extent the gene regulatory mechanisms of FDXR regulating breast cancer metabolism.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.