Project description:The plant hemicellulose xyloglucan (XyG) is secreted from the roots of numerous plant species, including cereals, and contributes towards soil aggregate formation in terrestrial systems. Whether XyG represents a key nutrient for plant-associated bacteria is unclear. The phylum Bacteroidota are abundant in the plant microbiome and provide several beneficial functions for their host. However, the metabolic and genomic traits underpinning their success remain poorly understood. Here, we employed whole-cell proteomics to determine the molecular mechanisms responsible for xyloglucan utilisation in two model Flavobacterium species, Flavobacterium johnsoniae DSM2064 and Flavobacterium sp. OSR005. We identified the occurrence of a distinct and conserved gene cluster, referred to as the Xyloglucan Utilisation Loci (XyGUL). Flavobacterium XyGUL is a hybrid of the molecular machinery found in gut Bacteroides spp., Cellvibrio japonicus, and the plant pathogen Xanthomonas. Combining protein biochemistry, computational modelling and phylogenetics, we identified a mutation in the enzyme required for initiating hydrolysis of the XyG polysaccharide, an outer membrane endoxyloglucanase glycoside hydrolase family 5 subfamily 4 (GH5_4), which enhances activity towards XyG.
2025-05-07 | PXD053370 | Pride
Project description:Genomic sequences of Variovorax spp.
| PRJNA981987 | ENA
Project description:Genomic sequences of Sphingomonas spp.
| PRJNA1041618 | ENA
Project description:Genomic sequences of seven Flavobacterium species
| PRJNA1199356 | ENA
Project description:Flavobacterium spp.
| PRJNA553297 | ENA
Project description:Genomic sequences of 15 Janthinobacterium spp.
Project description:Global food production is reliant on the application of finite phosphorus (P) fertilisers. Numerous negative consequences associated with intensive P fertilisation have resulted in a high demand to find alternative sustainable methods that will enhance crop P uptake. Bacteroidetes, primarily from the genus Flavobacterium, have recently been shown to be abundant members of the plant microbiome, but their general ecological role and potential to mobilise P in the rhizosphere remains very poorly characterised. Here, we sought to determine the P mobilisation potential of Flavobacterium strains isolated from the rhizosphere of oilseed rape (Brassica napus L.). In contrast to other abundant rhizosphere bacteria, such as Pseudomonas, all Flavobacterium strains exhibited constitutive phosphatase activity independent of external phosphate (Pi) concentrations. Interestingly, a combination of exoproteomic analysis and molecular microbiology techniques revealed that Flavobacterium have a complex and largely unique repertoire of proteins to mobilise and acquire Pi. This includes the expression of novel, as yet unidentified, phosphatases, and numerous proteins of unknown function. We also discovered that Flavobacterium expresses certain SusCD-like transporters, whose role is typically associated with specialised carbon acquisition, in response to Pi-starvation. Furthermore, the genes encoding these unusual Pi-responsive proteins were enriched in plant-associated Flavobacterium strains suggesting that this machinery represents niche-adaptive strategies for overcoming P scarcity in this genus. We propose that abundant rhizosphere-dwelling Flavobacterium spp. have evolved unique mechanisms for coping with Pi-stress which may provide novel solutions for future sustainable agricultural practices.
Project description:The following CGH experiments were conducted on four sectors (S1-S4) from a single primary ductal carcinoma tumor (T20) using the Sector-Ploidy-Profiling (SPP) Approach. SPP involves macro-dissecting the tumor, flow-sorting nuclei by differences in total genomic DNA content and profiling the genome of the tumor subpopulations.