Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:The transcriptome of the planarian Schmidtea mediterranea is not well characterized. We have used RNA-Seq to characterize the transcriptome in both sexual and asexual strains of S. mediterranea from both untreated and irradiated animals. Moreover, we have performed RNA-Seq on RNA purified from FACS sorted neoblasts and differentiated cells. Together these studies expand our understanding of the planarian transcriptome and have identified strain-specific, neoblast-specific, and conserved transcripts. RNA-Seq was performed on RNA isolated from untreated and irradiated S. mediterranea animals from both the sexual and asexual strains, on FACS purified X1 neoblasts, X2 neoblasts, and Xins differentiated cells. One of the raw data files for GSM847465 is missing. The fasta file is provided at http://genome.vcell.uchc.edu/GenomeData02/Graveley_Lab_Public_Data/Planarian/S.mediterranea_SexNIRmRNA3.fa.gz
Project description:Variability of regenerative potential among animals has long perplexed biologists. Based on their amazing regenerative abilities, planarians have become important models for understanding the molecular basis of regeneration; however, planarian species with limited regenerative abilities are also found. Despite the importance of understanding the differences between closely related, regenerating and non-regenerating organisms, few studies have focused on the evolutionary loss of regeneration, and the molecular mechanisms leading to such regenerative loss remain obscure. Here we examine Procotyla fluviatilis, a planarian with restricted ability to replace missing tissues, utilizing next-generation sequencing to define the gene expression programs active in regeneration-permissive and regeneration-deficient tissues. We found that Wnt signaling is aberrantly activated in regeneration-deficient tissues. Remarkably, down-regulation of canonical Wnt signaling in regeneration-deficient regions restores regenerative abilities: blastemas form and new heads regenerate in tissues that normally never regenerate. This work reveals that manipulating a single signaling pathway can reverse the evolutionary loss of regenerative potential. RNA-seq experiments to identify gene expression changes following amputation in body regions with variable regenerative potential. Adult Procotyla fluviatilis were amputated at sites either anterior or posterior to the pharynx. After 24 hours post-amputation, tissues near the amputation site were excised and RNA was extracted. Similar tissues were excised from uncut control animals. Samples were processed for RNA-seq using Illumina procedures. We generated a de novo P. fluviatilis transcriptome and used RNA sequencing (RNA-seq) to characterize transcripts from excised tissue fragments in Reg+ and Reg- body regions 24 hours post-amputation. We performed parallel analyses on tissues excised from intact animals at identical body regions to account for regional differences in transcripts, thereby identifying changes resulting from amputation. Samples A1-A3 = Regeneration-proficient (Reg+) tissue excision 24 hours after amputation. Samples B1-B3 = Tissue excision from regeneration-proficient (Reg+) region but not amputated. Samples C1-C3 = Tissue excision from regeneration-deficient (Reg-) tissues 24 hours after amputation. Samples D1, D3-D4 = Tissue excision from regeneration-deficient (Reg-) region that was not amputated.
Project description:Adult stem cells are tissue-specific cells with the capacity to self-renew and differentiate to continually replace cells lost to normal physiological turnover or injury. Neoblasts, the planarian stem cells, are widely distributed throughout the body mesenchyme, driving constitutive renewal of tissues during homeostasis and endowing planarians with the remarkable capacity to regenerate wholly from tiny tissue fragments. Neoblasts are the only dividing cells in planarians and are believed to be collectively comprised of both a heterogeneous population of pluripotent cells with broad differentiation potential and also lineage-committed progenitor cells that give rise to specific tissues. Recent technology has allowed one to isolate stem cells so we used a well-established method to isolate planarian stem cells by Hoechst blue staining and flow cytometry. To understand the molecular mechanisms underlying neoblast differentiation, we performed an RNA-Seq analysis of X1 and Xins cells looking at the differentially expressed genes between the two populations. Examine gene expression profiles of adult flatwormâ??s X1 and Xins cell types. The experiment was performed in quadruplicate yielding a total of 8 samples.
Project description:The transcriptome of the planarian Schmidtea mediterranea is not well characterized. We have used RNA-Seq to characterize the transcriptome in both sexual and asexual strains of S. mediterranea from both untreated and irradiated animals. Moreover, we have performed RNA-Seq on RNA purified from FACS sorted neoblasts and differentiated cells. Together these studies expand our understanding of the planarian transcriptome and have identified strain-specific, neoblast-specific, and conserved transcripts.
Project description:Interventions: lesion tissues vs. adjacent tissues of colorectal cancer patients:nil
Primary outcome(s): RNA
Study Design: Factorial
Project description:Regeneration is the regrowth of damaged tissues or organs, a vital mechanism in response to damages from primitive organisms to higher mammals. Planarian possesses active whole-body regenerative capability owning to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6-methyladenosine (m6A) modification participates in many biological processes, including stem cell self-renewal and differentiation, in particular the regeneration of hematopoietic stem cells and axons. However, how m6A controls regeneration at the whole-organism level remains largely unknown. Here, we demonstrate that the depletion of m6A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell-cell communication and cell cycle. Single-cell RNA-seq (scRNA-seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor-like cells (NP-like cells), characterized by specific expression of the cell-cell communication ligand grn. Intriguingly, the depletion of m6A-modified transcripts grn/cdk9 (or cdk7) axis rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6A modification in regulating whole-organism regeneration.
Project description:Variability of regenerative potential among animals has long perplexed biologists. Based on their amazing regenerative abilities, planarians have become important models for understanding the molecular basis of regeneration; however, planarian species with limited regenerative abilities are also found. Despite the importance of understanding the differences between closely related, regenerating and non-regenerating organisms, few studies have focused on the evolutionary loss of regeneration, and the molecular mechanisms leading to such regenerative loss remain obscure. Here we examine Procotyla fluviatilis, a planarian with restricted ability to replace missing tissues, utilizing next-generation sequencing to define the gene expression programs active in regeneration-permissive and regeneration-deficient tissues. We found that Wnt signaling is aberrantly activated in regeneration-deficient tissues. Remarkably, down-regulation of canonical Wnt signaling in regeneration-deficient regions restores regenerative abilities: blastemas form and new heads regenerate in tissues that normally never regenerate. This work reveals that manipulating a single signaling pathway can reverse the evolutionary loss of regenerative potential. RNA-seq experiments to identify gene expression changes following amputation in body regions with variable regenerative potential.