Project description:Current base editors use DNA deaminases, including cytidine deaminase in cytidine base editor (CBE) or adenine deaminase in adenine base editor (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for base editors capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel base editors, but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
Project description:Techniques for exclusion of exons from mature transcripts have been applied as gene therapies for treating many different diseases. Since exon skipping has been traditionally accomplished using technologies that have a transient effect, it is particularly important to develop new techniques that enable permanent exon skipping. We have recently demonstrated that this can be accomplished using cytidine base editors for permanently disabling the splice acceptor of target exons. We now demonstrate the application of adenine-deaminase base editors to disrupt the conserved adenosine within splice acceptor sites for programmable exon skipping. We also demonstrate that by altering the amino acid sequence of the linker between the adenosine deaminase domain and the Cas9 nickase or by coupling the adenine base editor with a uracil glycosylase inhibitor, the DNA editing efficiency and exon skipping rates improve significantly. Finally, we developed a split base editor architecture compatible with adeno-associated viral packaging. Collectively, these results represent significant progress towards permanent in vivo exon skipping through base editing and, ultimately, a new modality of gene therapy for the treatment of genetic diseases.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:We have developed a therapeutic strategy for beta-hemoglobinopathies aimed at reactivating fetal hemoglobin expression in red blood cells derived from human hematopoietic stem/progenitor cells edited with CRISPR/Cas9 nucleases, cytidine or adenine base editors targeting the fetal gamma-globin promoters. Here, we report the transcriptomic changes occurring in human hematopoietic stem/progenitor cells (obtained from healthy donors) 48 h after transfection with CRISPR/Cas9 nucleases, cytidine or adenine base editors.
Project description:Adenine and cytosine base editors (ABEs and CBEs) represent a new genome editing technology that allows the programmable installation of A-to-G or C-to-T alterations on DNA. We engineered Streptococcus pyogenes Cas9-based adenine and cytosine base editor (SpACE) that enables efficient simultaneous introduction of A-to-G and C-to-T substitutions in the same base editing window on DNA.
2020-07-02 | GSE137411 | GEO
Project description:Pseudomonas putida KT2440 edited with cytidine base editor
Project description:We used an adenine base editor to target the translation start site and mRNA splicing site of Camk2d in order to knock out CaMKIIδ. We found that editing the 5' splice site of intron 7 can lead to premature translation termination, effectively knocking out CaMKIIδ.
Project description:We used an adenine base editor to target the translation start site and mRNA splicing site of Camk2d in order to knock out CaMKIIδ. We found that editing the 5' splice site of intron 7 can lead to premature translation termination, effectively knocking out CaMKIIδ.
2025-01-21 | GSE266652 | GEO
Project description:Base editing analysis of muscles from adenine base editor-treated DMD mice.