Project description:The pathological basis of multiple sclerosis involves damage to both myelin sheaths and axons. Demyelination and axonal transection are considered to cause reversible and irreversible neurological deficits respectively, gradually destroying the neuronal circuitry of the CNS. In order to analyse the individual effects of the pathological hallmarks of multiple sclerosis on neurons, the pontocerebellar pathway was targeted with either lysolecithin-induced chemical demyelination or complete pathway transection. Transcriptional changes in the pontocerebellar neuronal nuclei were investigated with microarrays at days 4, 10 and 37 post-intervention to identify underlying molecular responses. A common as well as unique set of injury response genes was identified in the transection and the demyelination conditions. The increased expression of activating transcription factor 3 (Atf3) and thyrotropin-releasing hormone (Trh) in both injury paradigms was validated by immunohistochemistry. Expression of Atf3 in a patient with Marburg’s variant of multiple sclerosis was also detected in the pons with large cerebellar demyelination, confirming the activation of the Atf3 pathway in a human disease sample as well. This experimental approach may be useful for the identification of pathways that could be targeted for remyelinative and neuroprotective drug development.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BackgroundMurine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China.ResultsFecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%.ConclusionOur findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes