Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function. The transcriptional response of intestinal mucosal tissue (jejunum and ileum) served as parameters for the local response. Growing pigs (BW 35 kg/approx. 10 weeks) were fed with experimental diets containing a single, common or new protein sources viz. soybean meal (SBM), black soldier fly larvae (BSF), spray dried blood plasma (SDPP), rapeseed meal (RSM), and wheat gluten meal (WGM) over a period of 4 weeks.
Project description:White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially successful hybrid striped bass (M. chrysops x M. saxatilis). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision). Significant differential expressed genes and gene ontology of pairwise comparisons between control diet and each test diet are presented and discussed.
2024-02-14 | GSE220235 | GEO
Project description:Fecal bacterial composition from nursery pigs fed 2 direct fed microbials
Project description:The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 5-week-old crossbreed pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5 % IM (IM5) or 10 % IM (IM10) from Tenebrio molitor L. for 4 weeks and skeletal muscle was analyzed using transcriptomics. Transcriptomics of skeletal muscle revealed a total of 198 transcripts differentially expressed between IM10 and CON.
Project description:The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 5-week-old crossbreed pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5 % IM (IM5) or 10 % IM (IM10) from Tenebrio molitor L. for 4 weeks and liver was analyzed using transcriptomics. Transcriptomics of the liver revealed a total of 166 transcripts differentially expressed between IM10 and CON.
2019-10-02 | GSE138244 | GEO
Project description:CANOLA MEAL IN WEANED PIG DIETS
Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function, the immune system and systemic physiology. We used casein (CAS), partially delactosed whey powder (DWP), spray dried porcine plasma (SDPP), soybean meal (SBM), wheat gluten meal (WGM) and yellow meal worm (YMW) as protein sources. We investigated the effects of feeding mice during a period of four weeks on semi-synthetic diets containing 30% of six different protein sources. Microarrays were used to detail the global gene expression in the ileal mucosae of mice. Male C57BL/6J mice were stratified according to bodyweight and litter of origin into six dietary treatment groups. These mice were fed for four weeks with semi-synthetic diets containing one of the following protein sources. At the end of four weeks, mice were sacrificed by euthenesia and ileal tissue samples (scrapings) were collected for RNA extraction and hybridization on Affymetrix microarrays. Soybean meal (SBM) diet group served as reference to make comparisons with other experimental diets.
Project description:Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome and the cecal microbiome in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups (n = 12) and fed three different diets with either 0% (HI0), 7.5% (HI7.5) or 15% (HI15) defatted HI meal for 35 d. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield and apparent ileal digestibility (AID) of 12 amino acids were higher in group HI15 than in group HI0 (P > 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid and isobutyric acid in the cecal digesta were lower in group HI15 than in the other two groups (P > 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs HI0, respectively, (P > 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the three groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.
Project description:Fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent extracted camelina meal (CM) (8%, 16% or 24% CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed the CM inclusion diets. A 44k oligonucleotide array experiment was used to identify any differentially expressed transcripts in the distal intestine of the fish fed the 24% CM diet compared to the control. The expression level of these genes was validated using quantitative polymerase chain reaction, which was also used to measure transcript expression in the fish fed the 8% CM and 16% CM diets. Histopathological analysis was used to quantify any physical signs in inflammation in the distal intestine of the Atlantic salmon fed the CM-containing diets.
Project description:Background: The possible impact of changes in diet composition for the intestinal microbiome is mostly studied after some days of adaptation to the diet of interest. The question arises if few days are enough to reflect the microbial response to the diet by changing the community composition and function. The present study investigated the fecal microbiome of pigs in a time span of four weeks after a dietary change to get an insight of the needed adaptation period. Four different diets were used differing in either protein source (field peas meal vs. soybean meal) or the concentration of calcium and phosphorus (CaP). Results: Twelve pigs were sampled at seven time points within four weeks after the dietary change. Fecal samples were used to sequence the 16S rDNA amplicons, to analyse the microbial proteins via LC-MS/MS and to determine the SCFA production. The analysis of OTU abundances and quantification values of proteins showed a significant separation of three periods of time (p=0.001). Samples from the first day are used to define the ‘Zero phase’, samples of weeks one and two are combined as ‘metabolic phase’ and an ‘equilibrium phase’ was defined based on samples from week three and four. Only in this last phase, a separation according to the supplementation of CaP was significantly detectable (p=0.001). No changes were found based on the corn-soybean meal or corn-field peas administration. The analysis of possible factors causing this significant separation showed only an overall change of bacterial members and functional properties. The metaproteomic approach yields a total of about 9700 proteins, which were used to deduce possible metabolic functions of the bacterialcommunity.