Project description:We performed single cell DNA sequencing by means of Tapestri platform on a mix of Peripheral Blood Mononuclear Cells (PBMCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs) from a primary myelofibrosis (PMF). The main purpose of this project was to reconstruct the clonal composition of the neoplastic population by analyzing the mutational profile at the single-cell level.
Project description:Myelofibrosis is a severe myeloproliferative neoplasm characterised by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+Lineage- hematopoietic stem/progenitor cells (HSPCs), single-cell proteomics, genomics and functional assays. We identified a bias towards megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkP) were transcriptionally similar to healthy-donor MkP but the majority were disease-specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs showed increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Project description:Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm whose severity and treatment complexity is attributed to the presence of bone marrow (BM) fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironment. Within these niches, Mesenchymal Stromal Cells (BM-MSC) play a supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic progenitors. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic progenitor deregulation that features PMF. Primary Myelofibrosis, mesenchymal stroma cells, bone marrow, myeloproliferative disorders Transcriptome analysis was performed on BM-MSC amplified in vitro after 3 to 5 passages. Agilent Whole Human Genome Oligo Microarrays were used to compare expression profiling of BM-MSC from PMF patients and healthy donors.
Project description:Short RNAs expression profiling in circulating CD34+ cells from Primary Myelofibrosis patients and from normal controls pooled bone marrow CD34+ cells.
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 16,015 nuclei in human adult testis. This dataset includes five samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:We developed 3'-TARGET-seq, a single-cell genotyping and RNA-seq method, which allows accurate detection of multiple mutations within single-cells from genomic and coding DNA in parallel with high throughput 3'-biased whole transcriptome analysis, providing a powerful tool to link transcriptional and genetic tumor heterogeneity. Single cell whole transcriptome sequencing of 2798 Lineage-CD34+ HSPC (Hematopoietic Stem and Progenitor Cells) from patients with JAK2-V617F mutant myelofibrosis and normal controls using 3'-TARGET-seq reveals distinct molecular signatures associated with the presence of somatic mutations in single cells as well as distinct transcriptional profiles of WT cells from patient samples as compared with normal controls.
Project description:Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm whose severity and treatment complexity is attributed to the presence of bone marrow (BM) fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironment. Within these niches, Mesenchymal Stromal Cells (BM-MSC) play a supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic progenitors. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic progenitor deregulation that features PMF. Primary Myelofibrosis, mesenchymal stroma cells, bone marrow, myeloproliferative disorders