Project description:Background: Tumor necrosis factor α-induced protein 1 (TNFAIP1) is frequently downregulated in cancer cell lines and promotes cancer cell apoptosis. However, its role, clinical significance and molecular mechanisms in hepatocellular carcinoma (HCC) are unknown. Methods: The expression of TNFAIP1 in HCC tumor tissues and cell lines was measured by Western blot and immunohistochemistry. The effects of TNFAIP1 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation were evaluated by Cell Counting Kit-8 (CCK8), Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL), transwell, tube formation assay in vitro and nude mice experiments in vivo. The interaction between TNFAIP1 and CSNK2B was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), Co-immunoprecipitation and Western blot. The mechanism of how TNFAIP1 regulated nuclear factor-kappaB (NF-κB) pathway was analyzed by dual-luciferase reporter, immunofluorescence, quantitative Real-time polymerase chain reaction (RT-qPCR) and Western blot. Findings: The TNFAIP1 expression is significantly decreased in HCC tissues and cell lines, and negatively correlated with the increased HCC histological grade. Overexpression of TNFAIP1 inhibits HCC cell proliferation, metastasis, angiogenesis and promotes cancer cell apoptosis both in vitro and in vivo, whereas the knockdown of TNFAIP1 in HCC cell displays opposite effects. Mechanistically, TNFAIP1 interacts with CSNK2B and promotes its ubiquitin-mediated degradation with Cul3, causing attenuation of CSNK2B-dependent NF-κB trans-activation in HCC cell. Moreover, the enforced expression of CSNK2B counteracts the inhibitory effects of TNFAIP1 on HCC cell proliferation, migration, and angiogenesis in vitro and in vivo. Interpretation: Our results support that TNFAIP1 can act as a tumor suppressor of HCC by modulating TNFAIP1/CSNK2B/NF-κB pathway, implying that TNFAIP1 may represent a potential marker and a promising therapeutic target for HCC. Fund: This work was supported in part by the financial support from the China Natural Science Foundation (No. 81972642, No. 81601122 and No. 81770389), Hunan Natural Science Foundation (No. 2017JJ3205), Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (No. 20134486), and the Scientific Research Fund of Hunan Provincial Education Department (17B162).
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Canker disease caused by Neoscytalidium dimidiatum is the most serious disease that attacks the pitaya industry. One pathogenic fungus, referred to as ND8, was isolated from the wild-type red-fleshed pitaya (Hylocereus polyrhizus) of Hainan Province. Here, we studied mainly the host responses of red-fleshed pitaya (H. polyrhizus) cultivars against N. dimidiatum using Illumina RNA-Seq technology.
Project description:The Jinggang honey pomelo is recognized as one of the three major fruit industry brands in Jiangxi Province. However, the crop’s growth and yield have been significantly affected by the black spot disease caused by Diaporthe citri. Despite this impact, the defense mechanisms and underlying molecular responses of the Jinggang honey pomelo to the disease remain poorly understood.
Project description:In the current project, we evaluated the composition and toxicological profile of venom collected from farm-raised Naja atra. Venom was collected from third-generation captive bred Naja atra on a snake farm in Hunan Province, China. The venom was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and nano liquid chromatography with electrospray ionization tandem mass spectrometry
Project description:This study is a retrospective study to compare the efficacy and safety between trifluridine/tipiracil (TAS-102) plus bevacizumab (BEV) with TAS-102 monotherapy in refractory metastatic colorectal cancer (mCRC) from November 2020 to October 2022 at the Hunan Cancer Hospital.
| 60837 | ecrin-mdr-crc
Project description:Research on fungi of Camellia oleifera in Liuyang, Hunan Province