Project description:Cephalopods have long been getting a lot of attention for their fascinating behavioral abilities and for the complexity of their nervous systems that set them apart from other mollusks. Because of the great evolutionary distance that separates vertebrates from mollusks, it is evident that higher cognitive features have evolved independently in this clade although they sometimes resemble cognitive functions of vertebrates. Alongside their complex behavioral abilities, cephalopods have evolved specialized cells and tissues, such as the chromatophores for camouflage or suckers to grasp prey. Gaining a better understanding of the biology of various species of cephalopods can significantly improve our knowledge of how these animals evolved and better identify the mechanisms that drive the astonishing faculties of their nervous systems. In this study, we performed single-cell transcriptomics of whole heads of Loligo vulgaris pre-hatchlings. We characterized the different cell types in the head of these animals and explored the expression patterns of core cell type markers by hybridization chain reaction. We were able to thoroughly describe some major components of the squid nervous that play important roles for the maintenance, development and sensory function in the nervous system of these animals.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.
Project description:The analysis identifies differentially occupied genomic regions of H2Bub1, H3K79me3, and H3K27ac by RNF40 silencing in HCC1806 cells