Project description:The increasing resistence and/or bacterial tolerance to bactericides, such as chlorhexidine, causes worrisome public health problems. Using transcriptomical and microbiological studies, we analysed the molecular mechanisms associated with the adaptation to chlorhexidine in two carbapenemase-producing strains of Klebsiella pneumoniae belonging ST258-KPC3 and ST846-OXA48.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
2019-10-17 | GSE138949 | GEO
Project description:Klebsiella Pneumoniae ST307 from dogs
Project description:Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a major global health threat, particularly in healthcare-associated infections. While carbapenemase- and porin-centered mechanisms are well characterized, how subinhibitory carbapenem exposure selects noncanonical adaptive routes remains unclear. Here, we show that subinhibitory meropenem promotes O_x001E_antigen loss in K. pneumoniae, predominantly mediated by insertion sequences (IS), thereby enhancing carbapenem resistance. O_x001E_antigen deficiency rewires metabolism under meropenem pressure, especially glycine, serine, and threonine pathways, dampening reactive oxygen species (ROS) accumulation and limiting oxidative killing; exogenous glycine restores ROS production and meropenem susceptibility. Genomic surveys reveal widespread O_x001E_antigen loss in K. pneumoniae, largely driven by IS, and also in Escherichia coli, and O_x001E_antigen–deficient mutants confirm its role in promoting carbapenem resistance. Importantly, this adaptation entails a trade-off: it improves survival under carbapenem pressure but increases serum susceptibility, destabilizes the capsule, attenuates virulence in murine infection models, and confers collateral sensitivity to aminoglycosides. These findings uncover a previously unrecognized route to carbapenem resistance that links O_x001E_antigen remodeling to metabolic rewiring, offering conceptual and therapeutic leverage points.
Project description:Klebsiella pneumoniae is an arising threat to human health. However, host immune responses in response to this bacterium remain to be elucidated. The goal of this study was to identify the dominant host immune responses associated with Klebsiella pneumoniae pulmonary infection. Pulmonary mRNA profiles of 6-8-weeks-old BALB/c mice infected with/without Klebsiella pneumoniae were generated by deep sequencing using Illumina Novaseq 6000. qRT–PCR validation was performed using SYBR Green assays. Using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we identified several immune associated pathways, including complement and coagulation cascades, Toll-like receptor signaling pathway, Rap1 signaling pathway, chemokine signaling pathway, TNF signaling pathway, phagosome and NOD-like receptor signaling pathway, were involved in Klebsiella pneumoniae pulmonary infection. Using ICEPOP (Immune CEll POPulation) analysis, we found that several cell types were involved in the host immune response to Klebsiella pneumoniae pulmonary infection, including dendritic cells, macrophages, monocytes, NK (natural killer) cells, stromal cells. Further, IL-17 chemokines were significantly increased during Klebsiella pneumoniae infection. This study provided evidence for further studying the pathogenic mechanism of Klebsiella pneumoniae pneumonia infection.