Project description:Interventions: Case series:nill;The control group:nill
Primary outcome(s): Hydrogen sulfide;Pathological diagnosis
Study Design: Case-Control study
Project description:Stress response of Methylococcus capsulatus str.Bath toward hydrogen sulfide (H2S) was investigated via physiological study and transcriptomic profiling. M. capsulatus (Bath) can grow and tolerate up to 0.75%vol H2S in headspace. Vast change in pH suggests biological relevant sulfide oxidation. Dozens of H2S-sensitive genes were identified from comparison of cell transcriptome in different H2S concentrations. Mc sulfide quinone reductase (SQR) and persulfide dioxygenase were found to be active during sulfide detoxification. Moreover, xoxF, a novel lanthanide(Ln)-dependent methanol dehydrogenase (MDH) was overexpressed in H2S while mxaF, a calcium-dependent MDH, was down-regulated, and such MDH switch phenomenon is also well known to be induced by addition of lanthanide via an as-yet-unknown mechanism. Activities in quorum sensing and RND efflux pump also suggest their role in sulfide detoxification, and might provide insight on the xoxF/mxaF switch mechanism.
Project description:The aim of this experiment was to determine how exposure of Hydrogen sulfide impacts gene expression in Mycobacterium tuberculosis. RNA was isolated from actively growing mycobacterial cells (0.6-0.8 OD600) using Trizol according to established protocols (27). Briefly, cells were exposed to 25 µM GYY4137 for 1 hr under carefully controlled conditions (n=3/group) and RNA isolated. Unexposed cells received spent GYY4137 (without any capacity to produce Hydrogen sulfide).
Project description:Hydrogen sulfide (H2S) as an important gasotransmitter has fundamental roles in human diseases. The cellular effect of H2S has received lots of attention recently. H2S can affect ion channels, transcription factors and kinase in mammals. The mechanism of cellular effect of H2S is not completely understood. We used fission yeast as a model organism to study the global transcriptional profile in response to H2S by microarray.
Project description:Hydrogen sulfide (H2S) is formed naturally from L-cysteine in a variety of mammalian and non-mammalian cells. To date, numerous biological effects have been ascribed to H2S including control of cardiovascular, immune and nervous function. Over or under production of H2S has been observed in several disease states including hypertension and inflammation. In addition, it has been stipulated that H2S may affect the ageing process. The model nematode Caenorhabditis elegans is ideally suited for assessing drug effects on lifespan since it is relatively short-lived, can be easily exposed to drugs and its genome is fully sequenced and widely annotated.
Project description:The production of endogenous hydrogen sulfide (H2S) has been shown to confer antibiotic tolerance in all bacteria studied to date. Therefore, this mediator has been speculated to be a universal defense mechanism against antibiotics in bacteria. This is assuming that all bacteria produce endogenous H2S. In this study, we established that the pathogenic bacteria Acinetobacter baumannii does not produce endogenous H2S, giving us the opportunity to test the effect of exogenous H2S on antibiotic tolerance in a bacterium that does not produce it. By using a H2S-releasing compound to modulate the sulfide content in A. baumannii, we demonstrated that instead of conferring antibiotic tolerance, exogenous H2S sensitized A. baumannii to multiple antibiotic classes, and was able to revert acquired resistance to gentamicin. Exogenous H2S triggered a perturbation of redox and energy homeostasis that translated into hypersensitivity to antibiotic killing. We propose that H2S could be used as an antibiotic-potentiator and resistance-reversion agent in bacteria that do not produce it.
Project description:As one of the most important environmental factors, heat stress (HS) has been found to affect various biological activities of organisms such as growth, signal transmission, primary metabolism and secondary metabolism. Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Previous research showed that HS can induce the biosynthesis of ganoderic acids (GAs). In this study, we found the existence of hydrogen sulfide in Ganoderma lucidum; moreover, HS increased GAs biosynthesis and could affect the hydrogen sulfide content. We found that sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, could revert the increased GAs biosynthesis elicited by HS. This result indicated that an increased content of hydrogen sulfide, within limits, was associated with HS-induced GAs biosynthesis. Our results further showed that the GAs content was increased in CBS-silenced strains and could be reverted to WT strain levels by the addition of NaHS. Transcriptomic analyses indicated that that H2S can affect various intracellular signal pathways and physiological processes in G. lucidum. Further studies showed that H2S could affect the intracellular calcium concentration and thus regulate the biosynthesis of GAs. This study demonstrated that hydrogen sulfide is involved in the regulation of secondary metabolic processes induced by heat stress in filamentous fungi.