Project description:Streptococcus pneumoniae is a frequent coloniser of the human nasopharynx and a major cause of life-threating invasive infections such as pneumonia, meningitis and sepsis. Over 1 million people die every year due to invasive pneumococcal disease (IPD), mainly in developing countries. Serotype 1 is a common cause of IPD; however, unlike other serotypes, it is rarely found in the carrier state in the nasopharynx, which is often considered a prerequisite for disease. The aim of this study was to understand this dichotomy. We used murine models of carriage and IPD to characterise the pathogenesis of African serotype 1 (Sequence Type 217) pneumococcal strains obtained from the Queen Elizabeth Central Hospital in Blantyre, Malawi. We found that ST217 pneumococcal strains were highly virulent in a mouse model of invasive pneumonia, but in contrast to the generally accepted assumption, can also successfully establish nasopharyngeal carriage. Interestingly, we found that co-colonising serotypes may proliferate in the presence of serotype 1, suggesting that acquisition of serotype 1 carriage could increase the risk of developing IPD by other serotypes. RNAseq analysis confirmed that key virulence genes associated with inflammation and tissue invasiveness were upregulated in serotype 1. These data reveal important new insights into serotype 1 pathogenesis, with implications for carriage potential and risk of invasive disease through interactions with other co-colonising serotypes; an often overlooked factor in transmission and disease progression.
Project description:Invasive pneumococcal disease is preceded by asymptomatic colonization of the human nasopharynx by Streptococcus pneumoniae. Progression from colonization to invasion is a watershed in the host-pathogen interaction, and exposes the pneumococcus to markedly different microenvironments. This in turn, requires alterations in gene expression profile to adapt to the new niche. One apparent adaptive mechanism is reversible phase variation between “transparent” and “opaque” colony opacity phenotypes. Transparent phase variants colonize the nasopharynx more efficiently than opaque variants of the same strain, while opaque variants exhibit higher systemic virulence. Previous studies have reported quantitative differences in surface components such as the capsule, teichoic acid and certain surface proteins between the two phenotypes, but the underlying regulatory mechanism is not understood. In the present study, we found no differences in expression of key surface proteins between opaque and transparent variants of S. pneumoniae strain D39, but opaque cells produced five-fold more capsular polysaccharide. Subsequent microarray and real-time RT-PCR analysis showed no differences in capsule gene expression, but several genes involved in uridine monophosphate (UMP) biosynthesis were up-regulated in the opaque phenotype. This correlated with significant increases in the intracellular concentrations of both UMP and UDP-glucose, which are essential precursors for capsule biosynthesis. Our data suggest a novel mechanism for pneumococcal capsule regulation, in which rate-limiting precursor pathways are modulated rather than the capsule biosynthetic genes themselves. Keywords: Phase variants
Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and the leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there was little overlap in the sRNAs identified among these studies, which indicated that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there were likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence were not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:RNases perform indispensable functions in regulating gene expression in many bacterial pathogens by processing and/or degrading RNAs. Despite the pivotal role of RNases in regulating bacterial virulence factors, the functions of RNases have not yet been studied in the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus). Here, we sought to determine the impact of two conserved RNases, the endoribonuclease RNase Y and exoribonuclease polynucleotide phosphorylase (PNPase), on the physiology and virulence of S. pneumoniae serotype 2 strain D39. We report that RNase Y and PNPase are essential for pneumococcal pathogenesis as both deletion mutants showed strong attenuation of virulence in murine models of invasive pneumonia. Genome-wide transcriptomic analysis revealed that nearly 200 mRNA transcripts were significantly up-regulated, whereas the abundance of several pneumococcal sRNAs, including the Ccn (CiaR Controlled Noncoding RNA) sRNAs, were altered in the ∆rny mutant relative to the wild-type strain. Additionally, lack of RNase Y resulted in pleiotropic phenotypes that included defects in pneumococcal cell morphology and growth in vitro. In contrast, Dpnp mutants showed no growth defect in vitro, but differentially expressed a total of 40 transcripts including the tryptophan biosynthesis operon genes and numerous 5’-cis-acting regulatory RNAs, a majority of which were previously shown to impact pneumococcal disease progression in mice using the serotype 4 strain TIGR4. Altogether our data suggest that RNase Y exerts a global impact on pneumococcal physiology, while PNPase-mediates virulence phenotypes, likely through sRNA regulation.
Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and a leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there is little overlap in the sRNAs identified among these studies, which indicates that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there are likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence are not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:The primary mechanism by which pneumococcal capsular polysaccharide-based vaccines are believed to mediate protection is by induction of serotype-specific opsonic antibodies that facilitate bacterial killing by phagocytes (opsonophagocytosis). However, antibodies that are protective against experimental pneumococcal pneumonia in mice but do not promote opsonophagocytic killing in vitro have also been identified 1-3. Such non-opsonic antibodies are associated with bacterial clearance in vivo, but the mechanism by which this occurs is unknown. In this letter, we demonstrate that a protective, non-opsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody (MAb) enhances quorum sensing, which results in competence induction and fratricide of serotype 3 pneumococcus. Gene expression profile analysis revealed that the MAb together with the pneumococcal autoinducer, competence stimulating peptide 2 (CSP2), augments differential expression of competence (com) related bacteriocin-like peptide (blp) genes that are known to be involved in pneumococcal fratricide. Taken together, these findings reveal a previously unsuspected mechanism of antibody action, namely, enhancement of quorum sensing and bacterial fratricide. Given that this activity does not require phagocytes, antibodies that function accordingly may hold promise as adjuncts to current vaccines or as desired products of next generation pneumococcal vaccines.
Project description:Streptococcus pneumoniae is an opportunistic pathogen that colonizes the mucosal surfaces of the human upper respiratory tract. To the exception of very few studies, all previous transcriptomic analyses on the pneumococcus were carried out using lab-adapted strains such as D39 or TIGR4. Our study is one of the first to investigate the transcriptomes of serotype 1 (S1) pneumococci. We took the most basic approach of growing S. pneumoniae in brain heart infusion medium using three distinct strains, i.e. sequence type ST306, ST217 and ST615, as representative isolates of the European, African and South American S1 clusters. As a follow-up to our recent studies on these three lineages, we sought to investigate their respective in vitro transcriptomic profiles in comparison to D39. In total, 292 genes showed significant differential expression in the exponential growth phases of all three S1 isolates compared to D39. A total of 151 genes showed higher transcription levels while 141 genes presented lower expression. The most prominent functional groups showing higher expression included the competence pathway and purine metabolism, while lactose metabolism and iron/amino acid transport presented lower expression in serotype 1 strains. Our study provides novel insight into the signature gene expression associated with hypervirulent pneumococci S1 and highlight the need to perform transcriptomic analysis on pneumococcal strains other than lab-adapted strains.
Project description:The primary mechanism by which pneumococcal capsular polysaccharide-based vaccines are believed to mediate protection is by induction of serotype-specific opsonic antibodies that facilitate bacterial killing by phagocytes (opsonophagocytosis). However, antibodies that are protective against experimental pneumococcal pneumonia in mice but do not promote opsonophagocytic killing in vitro have also been identified 1-3. Such non-opsonic antibodies are associated with bacterial clearance in vivo, but the mechanism by which this occurs is unknown. In this letter, we demonstrate that a protective, non-opsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody (MAb) enhances quorum sensing, which results in competence induction and fratricide of serotype 3 pneumococcus. Gene expression profile analysis revealed that the MAb together with the pneumococcal autoinducer, competence stimulating peptide 2 (CSP2), augments differential expression of competence (com) related bacteriocin-like peptide (blp) genes that are known to be involved in pneumococcal fratricide. Taken together, these findings reveal a previously unsuspected mechanism of antibody action, namely, enhancement of quorum sensing and bacterial fratricide. Given that this activity does not require phagocytes, antibodies that function accordingly may hold promise as adjuncts to current vaccines or as desired products of next generation pneumococcal vaccines. 6 samples
Project description:Background: Pneumococcal secondary infection following influenza A virus (IAV) pneumonia is a synergistic complication with high mortality. While varying invasiveness of pneumococcal serotypes is an important pathogenic factor, serotype-specifc immediate-early transcriptional responses of the IAV-perturbed alveolar epithelium have not been adressed. We comprehensively analyzed gene transcription in alveolar type II epithelial cells (AECII) isolated from mice infected with IAV and/or S. pneumoniae (S.pn.) serotypes 4, 7F and 19F. Results: IAV, 14 days post infection, rendered the lung susceptible to invasive secondary S.pn. infection with serotypes 4 and 7F but not 19F. Only secondary 7F infection induced exacerbated cytokine/chemokine responses. IAV/7F infection induced superior protein expression of type I and II interferons, acesserbated expression in IAV/serotype 4 infection. Inference of a scale-free-like ARACNE gene co-expression network revealed interferon-response network modules in AECII and network-mapping unfolded S.pn. serotype-specific transcriptional network responses/usage. Secondary S.pn. infection abrogated the IAV-induced pneumocyte proliferative configuration and preceeding IAV infection rendered the transcriptional response to 7F infection comparable to that towards serotype 4. This related especially to network genes correlating with the expression of two master regulators of interferon responses: Irf7 and Stat1. Epigenetic ATAC-seq analysis of AECII in resolved IAV infection identified enhanced expression of ARACNE network genes Hist1h2bf, Igtp, Mki67, Rasl10b, H2-Q6 and H2-Q7 to be associated with increased chromatin accessability at promoter regions. Conclusions: We show that AECII sustainably retain an IAV-associated transcriptional configuration with epigenetic involvement, that serotype-specifically affects proliferation and accelerates and enhances the AECII transcriptional response, mainly to interferons, in secondary S.pn. infection.
Project description:identification of genetic differences and similarities between clinical isolates of s.pneumonie of the same sequence type and /or serotype