Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:In patients with hepatocellular carcinoma (HCC) meeting the Milan criteria, liver transplantation (LT) is an effective therapy. This study aims to define the survival-related molecular biological features helping precisely identifying the patients with HCC beyond the Milan criteria who have acceptable outcomes. In the derivation cohort (n = 122), integrated analyses of tumor tissues are conducted using RNA sequencing (RNA-seq), proteomic landscape and transposase-accessible chromatin sequencing (ATAC-seq). Based on transcriptomics, three subgroups that significantly differ in overall survival were identified in the derivation cohort, and these findings are validated in an independent cohort. In-depth bioinformatics analysis using RNA-seq and proteomics reveals that the promotion of cancer stemness by cancer-associated fibroblasts (CAFs) can be responsible for the negative biological characteristics observed in high-risk HCC patients. The ATAC-seq identifies key factors regulating transcription, which may bridge CAF infiltration and stemness. Finally, we demonstrate that the CAF-derived CXCL12 sustains the stemness of HCC cells by promoting XRCC5 through CXCR4.
Project description:Kilian2024 - Immune cell dynamics in Cue-Induced Extended Human Colitis Model
Single-cell technologies such as scRNA-seq and flow cytometry provide critical insights into immune cell behavior in inflammatory bowel disease (IBD). However, integrating these datasets into computational models for dynamic analysis remains challenging. Here, Kilian et al., (2024) developed a deterministic ODE-based model that incorporates these technologies to study immune cell population changes in murine colitis. The model parameters were optimized to fit experimental data, ensuring an accurate representation of immune cell behavior over time. It was then validated by comparing simulations with experimental data using Pearson’s correlation and further tested on independent datasets to confirm its robustness. Additionally, the model was applied to clinical bulk RNA-seq data from human IBD patients, providing valuable insights into immune system dynamics and potential therapeutic strategies.
Figure 4c, obtained from the simulation of human colitis model is highlighted here.
This model is described in the article:
Kilian, C., Ulrich, H., Zouboulis, V.A. et al. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. npj Syst Biol Appl 10, 69 (2024). https://doi.org/10.1038/s41540-024-00395-9
Abstract:
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
This model was curated during the Hackathon hosted by BioMed X GmbH in 2024.
Project description:Abstract The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell sub-populations. In this study, we performed snRNA-seq of a liver sample to identify sub-populations of cells based on nuclear transcriptomics. In 4,282 single nuclei we detected on average 1,377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p<0.05) for 7,682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry (MS) proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r=0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidines toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We identified a complex regulatory landscape for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.