Project description:DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base derived from 5-methylcytosine (5mC) accounts for ~40% of modified cytosine in brain, and has been implicated in DNA methylation-related plasticity. Here we map 5-hmC genome-wide across three ages in mouse hippocampus and cerebellum, allowing assessment of its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We find developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC-regulated regions reveals stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum we establish conserved genomic features of 5-hmC. Finally, we implicate 5-hmC in neurodevelopmental disease by finding that its levels are inversely correlated with methyl-CpG-binding protein 2 (Mecp2) dosage, a protein encoded by a gene in which mutations cause Rett Syndrome. These data point toward critical roles for 5-hmC-mediated epigenetic modification in neurodevelopment and diseases. Here we map 5-hmC genome-wide across three ages in mouse hippocampus and cerebellum, allowing assessment of its stability and dynamic regulation during postnatal neurodevelopment through adulthood. Profiling of 5-hmC in human cerebellum we establish conserved genomic features of 5-hmC. Finally, we implicate 5-hmC in neurodevelopmental disease by profiling 5-hmC in mouse cerebellum lacking MeCP2, a protein encoded by a gene in which mutations cause Rett Syndrome.
Project description:This SuperSeries is composed of the following subset Series: GSE32050: 5-hydroxymethylcytosine-mediated epigenetic dynamics during neurodevelopment and aging [5hmC Capture and Seq] GSE32187: 5-hydroxymethylcytosine-mediated epigenetic dynamics during neurodevelopment and aging [mRNA profiling] Refer to individual Series
Project description:DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base derived from 5-methylcytosine (5mC) accounts for ~40% of modified cytosine in brain, and has been implicated in DNA methylation-related plasticity. Here we map 5-hmC genome-wide across three ages in mouse hippocampus and cerebellum, allowing assessment of its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We find developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC-regulated regions reveals stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum we establish conserved genomic features of 5-hmC. Finally, we implicate 5-hmC in neurodevelopmental disease by finding that its levels are inversely correlated with methyl-CpG-binding protein 2 (Mecp2) dosage, a protein encoded by a gene in which mutations cause Rett Syndrome. These data point toward critical roles for 5-hmC-mediated epigenetic modification in neurodevelopment and diseases. Gene expression data derived from P7 and 6wk mouse cerebellum used for determining expression outcomes associated with dynamic alterations in 5-hydroxymethylcytosine
Project description:Whole-exome sequencing studies have implicated chromatin modifiers and transcriptional regulators in autism spectrum disorder (ASD) through the identification of de novo loss of function mutations in affected individuals. Many of these genes are co-expressed in mid-fetal human cortex, suggesting ASD risk genes converge in regulatory networks that are perturbed in ASD during neurodevelopment. To elucidate such networks we mapped promoters and enhancers bound by the chromodomain helicase CHD8, which is strongly enriched in ASD-associated de novo loss of function mutations, using ChIP-seq in mid-fetal human brain, human neural stem cells (hNSCs), and embryonic mouse cortex. We find that CHD8 targets are strongly enriched for ASD risk genes that converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in significant dysregulation of ASD risk genes targeted by CHD8, as well as additional genes important for neurodevelopment, including members of the Wnt/β-catenin signaling pathway. Integration of CHD8 binding data with genetic and gene co-expression data in ASD risk models provides support for additional ASD risk genes. Together, our results suggest that loss of CHD8 function contributes to ASD through regulatory perturbation of other ASD risk genes during human cortical development.
Project description:We generated human induced pluripotent cells from intellectual disability patients carrying the c.2T>C mutation in KDM5C (Called “Mutant”). We generated a paired, isogenic human iPS cell line (called “Corrected”) using CRISPR/Cas9 and PiggyBac gene-editing technologies and conducted neuronal differentiation based on “Yichen Shi et al. Nat. Protoc. 7, 1836–1846 (2012)” to define differences in gene expression between the Mutant and Corrected during neurodevelopment.