Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.
Project description:Obesity is a leading cause of primary hypertension in children, and a high-fat intake and the gut microbiota may be involved in the pathogenesis of obesity-related hypertension (OrHTN), but the underlying mechanisms are not fully understood. Here, we show that high-fat diet (HFD) feeding alters the gut microbiota composition in OrHTN rats, resulting in a reduced abundance of the butyrate-producing bacteria Ruminococcus and a subsequent decrease in plasma butyrate levels. Histone 3 lysine 9 butyrylation (H3K9bu) levels decreased in the kidneys of OrHTN rats, which downregulates the expression of the hypertension-related MAS1 gene. Furthermore, sodium butyrate affected H3K9bu modification levels in a concentration-dependent manner, with decreased H3K9bu and downregulated MAS1 expression at low concentrations in human proximal tubular epithelial cells. Our results suggest that a HFD contributes to the development of OrHTN by altering the gut microbiota and its metabolites, leading to the downregulation of H3K9bu and hypertension-related gene expression.
2024-06-27 | GSE235898 | GEO
Project description:Gut mycobiome in patients with pulmonary hypertension
| PRJNA1119731 | ENA
Project description:gut bacteriome in patients with pulmonary hypertension
Project description:Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut–kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut–kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated BP regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Project description:Rationale: Pulmonary arterial hypertension is a common and potentially fatal complication of scleroderma that may involve inflammatory and autoimmune mechanisms. Alterations in the gene expression of peripheral blood mononuclear cells have been previously described in patients with pulmonary arterial hypertension. The ability to identify patients at risk for developing pulmonary hypertension would be clinically beneficial. Objective: To identify genes that are differentially expressed in peripheral blood mononuclear cells in scleroderma patients with and without pulmonary hypertension which could be used as biomarkers of disease for early diagnosis and provide insight into pathogenesis of pulmonary hypertension in at-risk populations. Methods and Results: Gene expression analysis was performed on a carefully characterized Microarray Cohort of scleroderma patients with (n=10) and without (n=10) pulmonary hypertension. Differentially expressed genes were confirmed in the Microarray Cohort and validated in a separate Validation Cohort of scleroderma patients with (n=15) and without (n=19) pulmonary hypertension by RT-qPCR. We identified inflammatory and immune-related genes including interleukin-7 receptor (IL-7R) and chemokine receptor 7 (CCR7) as differentially expressed in patients with scleroderma-associated pulmonary hypertension. Flow cytometry confirmed decreased expression of IL-7R on circulating CD4+ T cells from scleroderma patients with pulmonary hypertension. Conclusions: Differences exist in the expression of inflammatory and immune-related genes in peripheral blood cells derived from patients with scleroderma-related pulmonary hypertension compared to those with normal pulmonary artery pressures. These findings may have implications as biomarkers to screen at-risk populations to facilitate early diagnosis and provide insight into inflammatory and autoimmune mechanisms of scleroderma-related pulmonary hypertension. Gene expression analysis was performed on a carefully characterized Microarray Cohort of scleroderma patients with (n=10) and without (n=10) pulmonary hypertension. Differentially expressed genes were confirmed in the Microarray Cohort by RT-qPCR.
Project description:Pediatric pulmonary hypertension is a heterogeneous disease associated with significant morbidity and mortality. MicroRNAs have been implicated as both pathologic drivers of disease and potential therapeutic targets in pediatric pulmonary hypertension. We sought to characterize the circulating microRNA profiles of a diverse array of pediatric pulmonary hypertension patients using high throughput sequencing technology. Peripheral blood samples were drawn from patients recruited at the time of a clinically indicated cardiac catheterization and microRNA sequencing followed by differential expression and target/pathway enrichment analyses were performed. Among 63 pediatric pulmonary hypertension patients, we identified specific microRNA signatures that uniquely classified patients by disease subtype, correlated with indicators of disease severity including invasive hemodynamic metrics, and changed over the course of treatment for pulmonary hypertension. These microRNA profiles include a number of specific microRNA molecules known to function in signaling pathways critical to pulmonary vascular biology and disease, including TGFβ beta, VEGF, PI3K/Akt, cGMP-PKG, and HIF-1 signaling. Circulating levels of miR-122-5p, miR-124-3p, miR-204-5p, and miR-9-5p decreased over the course of treatment in a subset of patients who had multiple samples drawn during the study period. Our findings support the further investigation of specific microRNAs as mechanistic mediators, biomarkers, and therapeutic targets in pulmonary hypertension.
Project description:Rationale: Pulmonary arterial hypertension is a common and potentially fatal complication of scleroderma that may involve inflammatory and autoimmune mechanisms. Alterations in the gene expression of peripheral blood mononuclear cells have been previously described in patients with pulmonary arterial hypertension. The ability to identify patients at risk for developing pulmonary hypertension would be clinically beneficial. Objective: To identify genes that are differentially expressed in peripheral blood mononuclear cells in scleroderma patients with and without pulmonary hypertension which could be used as biomarkers of disease for early diagnosis and provide insight into pathogenesis of pulmonary hypertension in at-risk populations. Methods and Results: Gene expression analysis was performed on a carefully characterized Microarray Cohort of scleroderma patients with (n=10) and without (n=10) pulmonary hypertension. Differentially expressed genes were confirmed in the Microarray Cohort and validated in a separate Validation Cohort of scleroderma patients with (n=15) and without (n=19) pulmonary hypertension by RT-qPCR. We identified inflammatory and immune-related genes including interleukin-7 receptor (IL-7R) and chemokine receptor 7 (CCR7) as differentially expressed in patients with scleroderma-associated pulmonary hypertension. Flow cytometry confirmed decreased expression of IL-7R on circulating CD4+ T cells from scleroderma patients with pulmonary hypertension. Conclusions: Differences exist in the expression of inflammatory and immune-related genes in peripheral blood cells derived from patients with scleroderma-related pulmonary hypertension compared to those with normal pulmonary artery pressures. These findings may have implications as biomarkers to screen at-risk populations to facilitate early diagnosis and provide insight into inflammatory and autoimmune mechanisms of scleroderma-related pulmonary hypertension.
Project description:<p>Gut microbiota dysbiosis has been implicated in pulmonary arterial hypertension (PAH). However, most studies have focused on the bacterial community and the exact role and mechanisms of multi-kingdom gut microbiota, including bacteria, archaea and fungi in PAH remains largely unclear. Idiopathic PAH (IPAH) patients exhibited distinct gut microbiota profiles with altered bacterial, archaeal and fungal compositions compared to healthy controls. Fecal microbiota transplantation (FMT) from IPAH patients or monocrotaline (MCT)-induced PAH rats to antibiotic treated rats induced PAH phenotypes, including increased right ventricular systolic pressure (RVSP) and pulmonary vascular remodeling. Conversely, FMT from normal rats to MCT-PAH rats ameliorated PAH symptoms and reversed multi-kingdom gut microbiota dysbiosis. Metabolomics revealed significant alterations in plasma metabolites. Our findings established a causal link between multi-kingdom gut microbiota dysbiosis and PAH, demonstrating the therapeutic potential of FMT in reversing PAH phenotypes. More importantly, in addition to gut bacteria, gut archaeal and fungal communities also significantly correlate with PAH pathogenesis, highlighting their indispensable role in the gut.</p>
Project description:Gene expression in the right ventricle is different in control patients as compared to either idiopathic dilated cardiomyopathy or pulmonary arterial hypertension Two human hearts obtained at autopsy from each of control, pulmonary hypertension, and dilated cardiomyopathy