Project description:Discovery of a new Lancefield group A antigen positive streptococcus and proposal of a new bacterial species Streptococcus hashimotonensis sp. nov.
| PRJDB16912 | ENA
Project description:Discovery of new South East Asia microalgae species
| PRJNA1069320 | ENA
Project description:Discovery of new South East Asia microalgae species
Project description:RNA-Seq was used to compare the transcriptome of Streptococcus mutans UA159 during growth alone in monoculture, in coculture with Streptococcus gordonii DL1, Streptococcus sanguinis SK36 or Streptococcus oralis 34, and in a quadculture containing all four species. Individual cultures of commensal species Streptococcus gordonii DL1, Streptococcus sanguinis SK36 and Streptococcus oralis 34 were sequenced as well. This revealed a common transcriptome pattern in S. mutans when grown in mixed-species culture, indepenedent of the species identity that S. mutans was cultured with. Additionally, transcriptome changes in the commensal species could also be determined when undergoing competition from S. mutans. RNA-Seq was used to compare the transcriptome of Streptococcus mutans UA159 during growth alone in monoculture or in coculture with Streptococcus sobrinus NIDR 6715, Lactobacillus casei ATCC 4646 or Corynebacterium matruchotii ATCC 14266. These data were compared to previous coculture and quadculture RNA-Seq data with commensal streptococci (GSE209925). These data confirmed a common transcriptome pattern in S. mutans when grown in mixed-species culture with commensal streptococci that is not present with non-commensal streptococci, indepenedent of the species identity that S. mutans was cultured with.
Project description:Leveraging the conserved cancer genomes across mammals has the potential to transform driver gene discovery in orphan cancers. Here, we combine cross-species genomics with validation across human-dog-mouse systems to uncover a new osteosarcoma driver genes. This widely applicable cross-species approach serves as a platform to expedite search of cancer drivers in rare human malignancies offering new targets for cancer therapy.
Project description:Our group recently transcriptomically characterized coculture growth between Streptococcus mutans and several species of commensal streptococci (Rose et al, 2023). However, these experiments were carried out in our lab-based experimental medium, tryptone and yeast extract (TY-). To understand whether culturing these species within a medium that more closely mimics their natural environment alters the interaction, we evaluated both monoculture and coculture growth between the dental caries pathogen Streptococcus mutans and oral commensal species Streptococcus oralis in a half TY- / half human saliva mix that was optimally chosen based on our initial characterization of oral streptococci behaviors in medium mixes containing saliva. Our results surprising show that inclusion of saliva enhances the competition of Streptococcus mutans against commensal streptococci through upregulation of carbohydrate uptake and glycolytic pathways.
Project description:PFGRC has developed a cost effective alternative to complete genome sequencing in order to study the genetic differences between closely related species and/or strains. The comparative genomics approach combines Gene Discovery (GD) and Comparative Genomic Hybridization (CGH) techniques, resulting in the design and production of species microarrays that represent the diversity of a species beyond just the sequenced reference strain(s) used in the initial microarray design. These species arrays may then be used to interrogate hundreds of closely related strains in order to further unravel their evolutionary relationships. The Pneumococcus are among most deadly pathogens world-wide. The infections and outbreaks caused by this pathogens is quite frequent despite existing diagnostic network and therapeutic means. Therefore, developing reliable diagnostic tools and efficient (broad-spectrum) therapeutics for Streptococcus pneumoniae remain a public health priority for every country in world today. The comparative genomics study will provide the largest hitherto genomic data sets regarding this pathogen.These large data sets will enable us as well as other members of scientific community to conduct comprehensive data mining in the form of gene association studies with statistical power and significance.
2011-08-01 | GSE29501 | GEO
Project description:Small RNA Discovery in Streptococcus mutans