Project description:The diversity of fin morphology within and across fish taxa offers great, but still largely unexplored, opportunities to investigate the proximate mechanisms underlying fin shape variation. Relying on available genetic knowledge brought forth mainly by the comprehensive study of the zebrafish caudal fin, we explored candidate molecular mechanisms for the maintenance and formation of the conspicuously elongated filaments adorning the unpaired fins of the East African "princess cichlid" Neolamprologus brichardi. Via qPCR assays, we detected expression differences of candidate genes between elongated and short regions of intact and regenerating fins. The identified genes include skeletogenic and growth factors (igf2b, fgf3, bmp2 and bmp4), components of the WNT pathway (lef1, wnt5b and wnt10) and a regulatory network determining fin ray segment size and junction (cx43, esco2 and sema3d), as well as other genes with different roles (mmp9, msxb and pea3). Interestingly, some of these genes showed fin specific expression differences which are often neglected in studies of model fish that focus on the caudal fin. Moreover, while the observed expression patterns were generally consistent with zebrafish results, we also detected deviating expression correlations and gene functions.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.
Project description:The analysis identifies differentially occupied genomic regions of H2Bub1, H3K79me3, and H3K27ac by RNF40 silencing in HCC1806 cells
Project description:This study aims to investigate the interactions of mutagenic lesions from diethylnitrosamine (DEN) treatment of mouse livers with such processes as replication, transcription, and interaction of DNA with proteins. Liver samples of 15-day old (P15) untreated C3H/HeOuJ mice were isolated and flash-frozen. ChIP-seq was performed to identify CTCF binding sites in livers of ten pooled individuals. The experiment was done with five biological replicates with a matched input library.
Project description:Because antibiotics have been widely used to prevent severe losses due to infectious fishery diseases, the liberal application and overuse of antibiotics has led to the spread and evolution of bacterial resistance, food safety hazards, and environmental issues. The use of some antibiotics, including florfenicol and enrofloxacin, is allowed in aquaculture in China. Accordingly, to better address the concerns and questions associated with the impact of administered enrofloxacin and florfenicol to grass carp, here we investigated the immune response, bacterial diversity, and transcriptome of the intestine of C. idella treated with these oral antibiotics. The aim of this study was to provide an in-depth evaluation of the antibiotic-induced patterns and dynamics of the microbiota grass carp and the potential mechanism involved.