Project description:UV-induced DNA lesions are an important contributor to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. We have used a novel high-throughput sequencing method to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at nucleotide resolution throughout the yeast genome. Analysis of CPD formation reveals that nucleosomal DNA having an inward rotational setting is protected from CPD lesions. In strongly positioned nucleosomes, this nucleosome 'photofootprint' overrides intrinsic dipyrimidine sequence preferences for CPD formation. CPD formation is also inhibited by DNA-bound transcription factors, in effect protecting important DNA elements from UV damage. Analysis of CPD repair revealed a clear signature of efficient transcription-coupled nucleotide excision repair. Repair was less efficient at translational positions near a nucleosome dyad and at heterochromatic regions in the yeast genome. These findings define the roles of nucleosomes and transcription factors in UV damage formation and repair. UV mapping data was analyzed for yeast cells irradiated with 125J/m2 and allowed to repair for 0hr (2 samples), 20 minutes, 1 hour, or 2 hours. Data is also included for naked DNA irradiated with UV 60 or 90 J/m2
Project description:Here, we describe a genome-wide map of photoreactivation repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast (Saccharomyces cerevisiae) by the endogenous yeast CPD photolyase. CPDs were mapped at single nucleotide resolution across the yeast genome using the CPD-seq method immediately after UV radiation (0min) and following 30 or 60min photoreactivation with UVA light. Photoreactivation repair by photolyase was mapped in both wild-type yeast and rad14∆ cells deficient in nucleotide excision repair (NER). We used these data to analyze CPD repair by photolyase in yeast genes, nucleosomes, and transcription factor binding sites.
Project description:Rad16 is required for global genomic nucleotide excision repair (GG-NER) of UV-induced CPD lesions. Here we have used a novel high-throughput sequencing method known as CPD-seq to map the repair of UV-induced cyclobutane pyrimidine dimers (CPDs) at single nucleotide resolution across the yeast genome in rad16 mutant cells. Analysis of CPD repair indicates that rad16 is generally required for CPD repair in the non-transcribed strand (NTS) of yeast genes and non-transcribed genomic regions.
Project description:UV-induced DNA lesions are an important contributor to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. We have used a novel high-throughput sequencing method to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at nucleotide resolution throughout the yeast genome. Analysis of CPD formation reveals that nucleosomal DNA having an inward rotational setting is protected from CPD lesions. In strongly positioned nucleosomes, this nucleosome 'photofootprint' overrides intrinsic dipyrimidine sequence preferences for CPD formation. CPD formation is also inhibited by DNA-bound transcription factors, in effect protecting important DNA elements from UV damage. Analysis of CPD repair revealed a clear signature of efficient transcription-coupled nucleotide excision repair. Repair was less efficient at translational positions near a nucleosome dyad and at heterochromatic regions in the yeast genome. These findings define the roles of nucleosomes and transcription factors in UV damage formation and repair.
Project description:Elf1 is an important transcription elongation factor that has been implicated in transcription coupled-nucleotide excision repair (TC-NER). Here, we have used a high-throughput sequencing method known as CPD-seq to map the repair of UV-induced cyclobutane pyrimidine dimers (CPDs) at single nucleotide resolution across the yeast genome in elf1 mutant cells. Analysis of CPD repair indicates that Elf1 is important for CPD repair in the transcribed strand (TS) of yeast genes, indicating it plays an important role in TC-NER.
Project description:We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers (CPD) photoproducts in the Caenorhabditis elegans (C. elegans) genome.
Project description:We developed a method for genome-wide mapping of DNA excision repair named XR-seq (eXcision Repair-seq). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating a ~30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells, cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts ((6-4)PPs). In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern, and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bi-directional eRNA production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. We have performed XR-seq for two types of UV-induced damages (CPD and (6-4)PP) in three different cell lines: NHF1, XP-C (XP4PA-SV-EB, GM15983)), and CS-B (CS1ANps3g2, GM16095). Two biological replicates were performed for each experiment, in which independent cell populations were UV treated and subjected to XR-seq.
Project description:Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data shows prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5’ side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identifies high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover new roles of often-overlooked mutation hotspots in perturbing gene transcription.