Project description:We identified p63 target genes and binding sites responsible for ectodermal defects by genome-wide profiling of p63 binding using ChIP-seq and expression analysis in human primary keratinocytes from patients with p63 mutations. As proof of principle, we identified a novel de novo microdeletion causing limb defects (SHFM1) that includes a p63 binding site functioning as a cis-regulatory element to control expression of the distally located DLX5/DLX6 genes essential for limb development. Our data demonstrate that target genes and regulatory elements detected in this study can serve as powerful tools to identify causative mutations of unresolved ectodermal disorders. ChIP-seq profiles of p63 in primary human keratinocytes established from two different normal individuals.
Project description:We identified p63 target genes and binding sites responsible for ectodermal defects by genome-wide profiling of p63 binding using ChIP-seq and expression analysis in human primary keratinocytes from patients with p63 mutations. As proof of principle, we identified a novel de novo microdeletion causing limb defects (SHFM1) that includes a p63 binding site functioning as a cis-regulatory element to control expression of the distally located DLX5/DLX6 genes essential for limb development. Our data demonstrate that target genes and regulatory elements detected in this study can serve as powerful tools to identify causative mutations of unresolved ectodermal disorders.
Project description:We report here genome wide identification of p63 binding sites in cycling neonatal foreskin keratinocytes using high throughput sequencing of ChIP enriched DNA. Analysis of gene ontology, database mining with integration with publicly available data, reveals a role for p63 in transcriptional regulation of multiple genes genetically linked to cleft palate. In addition, we identify AP-2α, a transcription factor which, when mutated, also results in craniofacial clefting syndrome, as a co-regulator of p63 responsive genes. Examination of p63 binding sites in neonatal foreskin keratinocytes
Project description:Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases. Comparison of gene expression at different stages of keratinocyte differentiation
Project description:Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases. Different stages of keratinocyte differentiation
Project description:Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases.
Project description:Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases.
Project description:Box C/D small nucleolar RNAs (snoRNAs) are a conserved class of RNA known for their role in guiding ribosomal RNA 2’-O-ribose methylation through base pairing with targeted sequences. Recently, C/D snoRNAs were also implicated in regulating the expression of non-ribosomal genes through different modes of binding. Large scale RNA-RNA interaction datasets detect many snoRNAs binding messenger RNA. However, these studies provide a narrow portrait of snoRNA targets forming under specific experimental conditions. To enable a more comprehensive study of C/D snoRNA interactions, we created snoGloBe, a human C/D snoRNA machine learning interaction predictor based on a gradient boosting classifier. SnoGloBe considers the target type, and position and sequence of the interactions, enabling it to outperform existing predictors. Interestingly, for specific snoRNAs, snoGloBe identifies strong enrichment of interactions near gene expression regulatory elements including splice sites. Abundance and splicing of predicted targets were altered upon the knockdown of their associated snoRNA. Strikingly, the predicted snoRNA interactions often overlap with the binding sites of functionally related RNA binding proteins, reinforcing their role in gene expression regulation. The interactions of snoRNAs are not randomly distributed but often accumulate in functionally related transcripts sharing common regulatory elements suggesting coordinated regulatory function. The wide scope of snoGloBe makes it an excellent tool for discovering viral RNA targets, which is evident from its capacity to identify snoRNAs targeting SARS-CoV-2 RNA, known to be heavily methylated. Overall, snoGloBe is capable of identifying experimentally validated binding sites and predicting novel sites with shared regulatory function.
Project description:We report here genome wide identification of p63 binding sites in cycling neonatal foreskin keratinocytes using high throughput sequencing of ChIP enriched DNA. Analysis of gene ontology, database mining with integration with publicly available data, reveals a role for p63 in transcriptional regulation of multiple genes genetically linked to cleft palate. In addition, we identify AP-2α, a transcription factor which, when mutated, also results in craniofacial clefting syndrome, as a co-regulator of p63 responsive genes.
Project description:Transcription factor (TF) p63 is a master regulator playing critical roles in epidermal development and other cellular processes. Our lab’s previous research deciphered a distinct chromatin architecture at p63 bound site in keratinocytes. In order to figure out whether those chromatin modifications already exist before p63 binding, or p63 occupancy contributes to such chromatin marks, we built p63-expressing cell lines. We then obtained p63 bound regions in these overexpressing cell line, and looked at different histone marks at those sites before p63 occupancy. As shown in the results, before p63 binding, the targeting sites have barely detectable histone marks, indicating p63’s capability to approach unmodified chromatins. Moreover, there is no significant difference in chromatin marks between p63 bound sites and unbound sites when no p63 binding happens. Our in vivo findings were confirmed by examining p63 binding to unmodified nucleosomes in vitro, showing that histone modification is not indispensable for p63 binding but binding site positioning on nucleosome does play a role. Overall, our results suggest that histone modifications do not affect p63 binding, and p63 protein can bind to inaccessible, weakly modified chromatin regions in vivo.