Project description:Low-carbohydrate diets enhance lipid metabolism and decrease reliance on glucose oxidation in athletes, but the associated gene expression patterns remain unclear. To provide mechanistic insight, we investigated the skeletal muscle transcriptome in elite ultra-endurance athletes habitually consuming a high-carbohydrate (HC, n=10, 33±6y, VO2max=63.4±6.2 mL O2•kg-1•min-1) or low-carbohydrate (LC, n=10, 34±7y, VO2max=64.7±3.7 mL O2•kg-1•min-1) diet. Skeletal muscle gene expression was measured at baseline (BL), immediately-post (H0), and 2h (H2) after 3h submaximal treadmill running. Exercise induced a coordinated but divergent expression pattern. LC had higher expression of genes associated with lipid metabolism, particularly at BL. At H2, gene expression patterns were associated with differential pathway activity, including inflammation/immunity, suggesting a diet-specific influence on early muscle recovery. These results indicate that a habitual ketogenic diet leads to differences in resting and exercise-induced skeletal muscle gene expression patterns, underlying our previous findings of differential fuel utilization during exercise in elite male ultra-endurance athletes.
Project description:To evaluate the roles of miRNA in porcine liver, dynamic profiles of microRNAome were investigated in swine breeds with different traits of commercial interest, we sampled liver tissues from a Chinese well-known elite native breed of Enshi black pig, a Large White pig, and a Chinese wild boar living within the same environment at the same day-old(90d).
Project description:Here we exploited a Han Chinese population-based cohort with extensive host metadata established in the Pinggu (PG) district of Beijing, and investigated gut microbiota from 2,338 adults (26-76 years) by metagenomic sequencing, revealing associations of the gut microbiota with sex, sex hormones, age, and a number of clinical and metabolic parameters.
Project description:This study explores the role of the gut microbiome in modulating host metabolism among Colombian athletes, comparing elite weightlifters (n = 16) and cyclists (n = 13) through integrative omics analysis. Fecal and plasma samples collected one month before an international event underwent metagenomic, metabolomic, and lipidomic profiling. Metagenomic analysis using bioBakery tools identified significant microbial pathways, including L-arginine biosynthesis III and fatty acid biosynthesis initiation (Figure 1). Key metabolic pathways were enriched in both athlete groups, such as phenylalanine, tyrosine, and tryptophan biosynthesis, arginine biosynthesis, and folate biosynthesis. Plasma metabolomics and lipidomics revealed distinct metabolic profiles and a separation between athlete types through multivariate models, with lipid-related pathways such as lipid droplet formation and glycolipid synthesis driving the differences. Notably, elevated carnitine, amino acid, and glycerolipid levels in weightlifters suggest energy system-specific metabolic adaptations. These findings underscore the complex relationship between gut microbiota composition and metabolic responses tailored to athletic demands, laying groundwork for personalized strategies to optimize performance. This research highlights the potential for targeted modulation of gut microbiota as a basis for tailored interventions to support specific energy demands in athletic disciplines.
Project description:To explore the methylome differences of swine breeds with different traits of commercial interest, we sampled liver tissues from a Chinese well-known elite native breed of Enshi black pig, a Large White pig, and a Chinese wild boar living within the same environment at the same daya-old (90d).