Project description:Comparison of gene expression profile of the whiB4 mutant strain of Mycobacterium tuberculosis with the wild type Mycobacterium tuberculosis H37RV Mtb WhiB4 mutant mRNA was compared with the mRNA of wtMtb H37RV under aerobic conditons
Project description:Transcriptional profile comparison among Beijing and non-Beijing M. tuberculosis isolates. Three M. tuberculosis strains were compared. The laboratory reference strain, H37Rv, belongs to the Euro-American or lineage 4. Two clinical isolates of the East-Asian or lineage 2: 98_1663 is a pre-Beijing or Group 1 isolate, and HN878 is a Beijing or Group 5 isolate. Three replicates were performed for each comparison using two different biological samples.
Project description:Bacterial persister cells are phenotypic variants of regular cells that are tolerant to antibiotics. High-persister (hip) mutants of Mycobacterium tuberculosis produce 10- to 1,000-fold more persister cells than the wild type strain when challenged with various antibiotics. Comparison of gene expression pattern of the hip mutants may provide clues as to the genetic mechanisms underlying persister formation. Transcriptome analysis will provide information on what differentiates M. tuberculosis hip strains from regular strains, which will be useful in the development of anti-persister therapy for persister cell eradication.
Project description:Comparison of gene expression profile of the whiB4 mutant strain of Mycobacterium tuberculosis with the wild type Mycobacterium tuberculosis H37RV Mtb WhiB4 mutant mRNA was compared with the mRNA of wtMtb H37RV under aerobic conditons Aerbic conditions OD600 nm of 0.4, MtbWhiB4KO vs wtMtb, biological replicates: 3 wt Mtb H37RV and 3 MtbWhiB4 KO
Project description:This SuperSeries is composed of the following subset Series: GSE6209: The global transcriptional profile of Mycobacterium tuberculosis during human macrophages infection GSE7962: Sigma factor E of Mycobacterium tuberculosis controls the expression of bacterial components that modulate macrophages Keywords: SuperSeries Refer to individual Series