Project description:Staphylococcus aureus is a common human and animal opportunistic pathogen. In humans nasal carriage of S. aureus is a risk factor for various infections. Methicillin-resistant S. aureus ST398 is highly prevalent in pigs in Europe and North America. The mechanism of successful pig colonization by MRSA ST398 is poorly understood. Previously, we developed a nasal colonization model of porcine nasal mucosa explants to identify molecular traits involved in nasal MRSA colonization of pigs. Here, we report the analysis of the transcriptome of MRSA ST398 strain S0462 during colonization on the explant epithelium. Major regulated genes were encoding metabolic processes and regulation of these genes represents metabolic adaptation to nasal mucosa explants. Colonization was not accompanied by significant changes in transcripts of main virulence associated genes or known human colonization factors. Here, we document regulation of two genes which have potential influence on S. aureus colonization; cysteine extracellular proteinase (scpA) and von Willebrand factor-binding protein (vwbp, located on SaPIbov5). Colonization with isogenic-deletion strains (Δvwbp and ΔscpA) did not alter the nasal S. aureus colonization compared to wild type. Our results suggest that nasal colonization with MRSA ST398 is a complex event that is accompanied with changes in bacterial gene expression regulation and metabolic adaptation.
Project description:Staphylococcus aureus is a common human and animal opportunistic pathogen. In humans nasal carriage of S. aureus is a risk factor for various infections. Methicillin-resistant S. aureus ST398 is highly prevalent in pigs in Europe and North America. The mechanism of successful pig colonization by MRSA ST398 is poorly understood. Previously, we developed a nasal colonization model of porcine nasal mucosa explants to identify molecular traits involved in nasal MRSA colonization of pigs. Here, we report the analysis of the transcriptome of MRSA ST398 strain S0462 during colonization on the explant epithelium. Major regulated genes were encoding metabolic processes and regulation of these genes represents metabolic adaptation to nasal mucosa explants. Colonization was not accompanied by significant changes in transcripts of main virulence associated genes or known human colonization factors. Here, we document regulation of two genes which have potential influence on S. aureus colonization; cysteine extracellular proteinase (scpA) and von Willebrand factor-binding protein (vwbp, located on SaPIbov5). Colonization with isogenic-deletion strains (Î?vwbp and Î?scpA) did not alter the nasal S. aureus colonization compared to wild type. Our results suggest that nasal colonization with MRSA ST398 is a complex event that is accompanied with changes in bacterial gene expression regulation and metabolic adaptation. Number of the samples: 5 (timepoint 0 min, 30 min, 60 min, 90 min and 180 min) in 4 replicates. 4 control samples
Project description:Previous studies have documented the diversity of genetic background of methicillin-resistant S. aureus (MRSA) strains associated with healthcare (HA-MRSA), community (CA-MRSA) and livestock (LA-MRSA). The accessory and core-variable genome content of those strains remain largely unknown. To compare the composition of accessory and core-variable genome of Belgian MRSA strains according to host, population setting and genetic background, representative strains of HA- (n=21), CA- (n = 13) and ST398 LA-MRSA (n = 18) were characterized by a DNA-microarray (StaphVar Array) composed of oligonucleotide probes targeting ~400 resistance, adhesion and virulence associated genes.ST398 strains displayed very homogenous hybridization profiles (>94% gene content homology) irrespective of their host origin. This “ST398-specific” genomic profile was not distantly demarked from those of certain human-associated lineages but lacked several virulence- and colonization-associated genes harbored by strains of human origin, such as genes encoding proteases, haemolysins or adhesins. No enterotoxin gene was found among ST398 strains. In conclusion, our findings are consistent with a non-human origin of this ST398 lineage but suggest that it might have the potential to adapt further to the human host.
Project description:Background: Bacterial small regulatory RNAs (sRNAs) have been implicated in important processes including antimicrobial stress response. However, the full extent of sRNA involvement in antimicrobial response in Staphylococcus aureus, an important pathogen, is incompletely understood. We investigated the transcriptional profiles of a linezolid-resistant, livestock-associated methicillin-resistant S. aureus (LA-MRSA) strain ST398 under conditions of linezolid stress. Methods: Cells in mid-exponential growth were subjected to low (8 µg/ml) and high (16 µg/ml) dose linezolid treatments followed by high throughput RNA sequencing. Read mapping and differential expression analysis were performed followed by detection and interrogation of various sRNA and mRNA transcripts. Results: Twenty-three putative regulatory RNA transcripts were expressed under low- and high-dose exposure conditions. Cis-acting regulatory elements, mainly targeting ribosomal biogenesis constituted the majority of transcriptional response with limited antisense and small RNA expression. Conclusions: This is the first study to investigate linezolid-responsive small RNA transcription in LA-MRSA strain ST398 and the first to query regulatory RNAs on a background of linezolid resistance. It provides preliminary insights and a basis for interrogating small RNAs in other strains in the quest to understand drug-responsive regulatory RNAs and identify potential anti-staphylococcal therapeutic candidates.
Project description:Staphylococcus aureus (S. aureus) is a Gram-positive opportunistic bacterium commonly isolated on the skin and in the nasal cavity of many healthy individuals. It can cause infections, from local skin and soft tissue infections (SSTIs) like wound infections, abscesses, and cellulitis, to more severe conditions such as endocarditis, pneumonia, sepsis, and toxic shock syndrome. Its pathogenicity is due to its numerous virulence factors and its adaptability to environmental changes, including pH, oxygen, CO2, and temperature during host infections. Understanding metabolic adaptation is a complex step for identifying new therapeutic targets to combat antibiotic-resistant pathogens. Proteomic approaches are essential for studying microbial protein expression during environmental changes to understand metabolic pathways and antibiotic resistance mechanisms. We investigated the protein expression of two MRSA strains under three experimental conditions (ECs) to simulate the variations in pH, temperature, and NaCl concentration expected during a wound infection. One strain is Livestock-Associated (LA-MRSA) ST398, which colonizes the nasal cavity of pigs and has also been reported in other animals and used in the food industry. It poses a risk for farmers and people in direct contact with animals, such as veterinarians. The other strain is Community Associated (CA-MRSA), JE2 strain (USA300 isolate), one of the major causes of SSTI and the main cause of CA infections in the USA. The selected ECs mimic the stress conditions occurring on the skin during infection with S. aureus. These ECs were named experimental condition 1 (EC1), characterized by pH 7 at 37°C and considered as a control condition; experimental condition 2 (EC2), characterized by pH 6 at 35°C; and experimental condition 3 (EC3), characterized by pH 6 at 35°C with 5% NaCl added to the medium. The comparative analysis of bacterial proteomes under these diverse in vitro exposures provided evidence of metabolic reshaping and highlighted strain-specific and environmental-specific variations in critical bacterial functions.
Project description:There is evidence that MRSA ST398 of animal origin is only capable of temporarily occupying the human nose, and it is therefore, often considered a poor human colonizer.We inoculated 16 healthy human volunteers with a mixture of the human MSSA strain 1036 (ST931, CC8) and the bovine MSSA strain 5062 (ST398, CC398), 7 weeks after a treatment with mupirocin and chlorhexidine-containing soap. Bacterial survival was studied by follow-up cultures over 21 days. The human strain 1036 was eliminated faster (median 14 days; range 2-21 days) than the bovine strain 5062 (median 21 days; range 7-21 days) but this difference was not significant (pM-bM-^@M-^J=M-bM-^@M-^J0.065). The bacterial loads were significantly higher for the bovine strain on day 7 and day 21. 4/14 volunteers (28.6%) showed elimination of both strains within 21 days. Of the 10 remaining volunteers, 5 showed no differences in bacterial counts between both strains, and in the other 5 the ST398 strain far outnumbered the human S. aureus strain. Within the 21 days of follow-up, neither human strain 1036 nor bovine strain 5062 appeared to acquire or lose any mobile genetic elements. In conclusion, S. aureus ST398 strain 5062 is capable of adequately competing for a niche with a human strain and survives in the human nose for at least 21 days. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-131]
Project description:in vitro comparison between two MRSA grown in rich (BHI) and poor media (SNM), compared with the nasal metatranscriptome reads of S. aureus. Global expression profile of two MRSA strains of S.aureus harvested in two different growth phases and compared with a metatranscriptome nose sample of a S. aureus carrier.
Project description:Livestock-associated (LA) methicillin-resistant Staphylococcus aureus (MRSA) and strains of sequence type 398 (ST398), which first became known for its widespread colonization of pigs but are now also rapidly emerging in the number of human colonization and infections. The ability of broad host adaption in combination with a consciously evolves by acquisition of virulence gene or mobile genetic elements (MGE) have been increasingly addressed ST398 lineage a serious threat to public health. The present study was aimed to track out how the diverse ST398 lineage, which colonized or infected in a broad range of reservoirs and various geographic regions, is actually reflected in the course of virulence evolution. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 30 representative clinical isolates using label-free quantitative mass spectrometry. The results show that these isolates can be divided into five distinct clusters based on their exoproteome identities and abundance signatures. The majority of proteins identified were predicted as cytoplasmic proteins showing substantial heterogeneity among our 30 investigated isolates. Only 50% of isolates their exoproteome clustering of isolates can be correlated the clustering based on genome sequences suggested that the large-scale extend of genotype changes over time. To assess the virulence and cytotoxicity of the 30 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results uncovered the grouping of clinical isolates based on their virulence or cytotoxicity have apparently distinctive exoproteome signatures and particular exoproteins could play decisive roles in pathogenicity of this specific S. aureus lineage. Altogether, the combination of exoproteome and virulence analysis contribute to the comprehensive insights for the impact of genome diversity on the global production of virulence factors of this zoonotic lineage, and more importantly, our outcomes as well as our approach provided an effective pipeline to define proteomic signatures of S. aureus virulence.