Project description:<p> Introduction: This study aimed to investigate the effects of natural forage from different regions (saline-alkali and non-saline-alkali areas) on the rumen microbiota, muscle metabolites, and meat quality of Tibetan sheep. </p><p> Methods: Targeted and non-targeted metabolomics were used to comprehensively analyze both pasture and meat quality, metabolites. Additionally, 16S rDNA sequencing was employed to analyze the rumen microbial community structure of Tibetan sheep.</p><p> Results: The results showed that the natural saline-alkali forage (HG group) had higher protein content, lower fiber content, higher relative feed value, and better quality. Metabolomic analysis revealed significant accumulation of flavonoids and upregulation of amino acid metabolism in the HG group. Additionally, the natural saline-alkali forage significantly increased amino acid deposition in Tibetan sheep muscle, markedly enhanced the redness value (a*), and significantly reduced the yellowness value (b*). Furthermore, the natural saline-alkali forage altered the rumen fermentation patterns in Tibetan sheep, leading to a significant increase in the abundance of F082 and WCHB1-41, while significantly reducing the abundance of Prevotellaceae_UCG-003. Correlation analysis revealed that these microbial taxa were significantly influenced by the natural saline-alkali forage,while also showing significant associations with muscle quality parameters (a*, b*) and metabolites (cysteine, C18:1n9, etc.).</p><p>Discussion: Overall, the natural saline-alkali forage demonstrated superior quality and metabolite content compared to natural non-saline-alkali forage. Furthermore, this saline-alkali forage significantly influenced the abundance of specific rumen microbiota in Tibetan sheep, consequently regulating</p>
Project description:<p>Introduction: This study aimed to investigate the effects of natural forage from different regions (saline-alkali and non-saline-alkali areas) on the rumen microbiota, muscle metabolites, and meat quality of Tibetan sheep. </p><p>Methods: Targeted and non-targeted metabolomics were used to comprehensively analyze both pasture and meat quality, metabolites. Additionally, 16S rDNA sequencing was employed to analyze the rumen microbial community structure of Tibetan sheep.</p><p>Results: The results showed that the natural saline-alkali forage (HG group) had higher protein content, lower fiber content, higher relative feed value, and better quality. Metabolomic analysis revealed significant accumulation of flavonoids and upregulation of amino acid metabolism in the HG group. Additionally, the natural saline-alkali forage significantly increased amino acid deposition in Tibetan sheep muscle, markedly enhanced the redness value (a*), and significantly reduced the yellowness value (b*). Furthermore, the natural saline-alkali forage altered the rumen fermentation patterns in Tibetan sheep, leading to a significant increase in the abundance of F082 and WCHB1-41, while significantly reducing the abundance of Prevotellaceae_UCG-003. Correlation analysis revealed that these microbial taxa were significantly influenced by the natural saline-alkali forage,while also showing significant associations with muscle quality parameters (a*, b*) and metabolites (cysteine, C18:1n9, etc.).</p><p>Discussion: Overall, the natural saline-alkali forage demonstrated superior quality and metabolite content compared to natural non-saline-alkali forage. Furthermore, this saline-alkali forage significantly influenced the abundance of specific rumen microbiota in Tibetan sheep, consequently regulating</p>
2025-07-19 | MTBLS12748 | MetaboLights
Project description:Tibetan sheep muscle mRNA sequencing data
Project description:Texel and Ujumqin sheep show obvious differences in muscle and fat growth, so they are ideal models not only to understand the molecular mechanism in prenatal skeletal muscle development, but to identify the potential target genes of myostatin. To elucidate the phenotypic variation between the two sheep breeds and the dynamic characteristics of gene expression in skeletal muscle during the development, we examined the development of skeletal muscle in transcriptome-wide level at 70, 85,100,120 , 135 days post coitus (dpc),birth, 1 month and 2 month. Using the specialized and standardized sheep transcriptome-wide oligo DNA microarray (Agilent), we analyzed the transcriptomic profiles of longissmuss dorsi muscle from fetuses of Texel and Ujumqin sheep. We characterized dynamic transcriptome-wide profiles that accompany the prenatal skeletal muscle and fat development in Texel and Ujumqin sheep respectively, and compared the difference in profiles of gene expression between the two sheep breeds at the same developmental stage.Some potential myostatin target genes and other genes controlling the growth of skeletal muscle and adipose were identified for further examinations. Our findings not only contribute to understand the molecular mechanism of prenatal skeletal muscle development in large precocial species, but also provide some clues for human myopathy and obesity at prenatal stages. Moreover, we also can identify putative candidate genes for meat quality traits in farm animals.
2010-12-20 | GSE23563 | GEO
Project description:Skin transcriptome of Tibetan sheep
Project description:Texel and Ujumqin sheep show obvious differences in muscle and fat growth, so they are ideal models not only to understand the molecular mechanism in prenatal skeletal muscle development, but to identify the potential target genes of myostatin. To elucidate the phenotypic variation between the two sheep breeds and the dynamic characteristics of gene expression in skeletal muscle during the development, we examined the development of skeletal muscle in transcriptome-wide level at 70, 85,100,120 , 135 days post coitus (dpc),birth, 1 month and 2 month. Using the specialized and standardized sheep transcriptome-wide oligo DNA microarray (Agilent), we analyzed the transcriptomic profiles of longissmuss dorsi muscle from fetuses of Texel and Ujumqin sheep. We characterized dynamic transcriptome-wide profiles that accompany the prenatal skeletal muscle and fat development in Texel and Ujumqin sheep respectively, and compared the difference in profiles of gene expression between the two sheep breeds at the same developmental stage.Some potential myostatin target genes and other genes controlling the growth of skeletal muscle and adipose were identified for further examinations. Our findings not only contribute to understand the molecular mechanism of prenatal skeletal muscle development in large precocial species, but also provide some clues for human myopathy and obesity at prenatal stages. Moreover, we also can identify putative candidate genes for meat quality traits in farm animals. Longissimus dorsi muscles were sampled from five prenatal development stages (70, 85, 100, 120 and 135 day of gestation) in Texel and eight development stages (at 70, 85, 100, 120, 135 days post coitus (dpc), birth, 1 month and 2 month) in Ujumqin sheep. There were at least three replicates at each development time in each breed. Two gene expression experiments were conducted with a total of 40 hybridizations.
Project description:To investigate the impact of adding succinate to the diet on the production performance, meat quality, muscle fiber characteristics, and transcriptome of the longissimus dorsi muscle in Tan sheep, 36 Tan sheep were selected and fed with different levels of succinate (0%, 0.5%, 1.0%, 2.0%) for a 60-day trial period. Overall, compared to the control group, the addition of succinate to the diet improved the production performance, slaughter performance, and meat quality of Tan sheep. It significantly increased dry matter intake, carcass weight, eye muscle area, and the GR value while significantly reducing the shear force and cooking loss of the longissimus dorsi muscle (p<0.05). Furthermore, the addition of succinate to the diet altered the muscle fiber characteristics of the longissimus dorsi muscle in Tan sheep, significantly increasing the fiber diameter and cross-sectional area of type I and type IIa muscle fibers (p<0.05). The addition of 1.0% succinate to the diet altered the transcriptome of the longissimus dorsi muscle in Tan sheep, with 741 differentially expressed genes identified compared to the control group. These differentially expressed genes were involved in various pathways related to lipid metabolism, energy metabolism, and muscle development, such as insulin secretion, insulin resistance, cAMP signaling pathway, PI3K-Akt signaling pathway, and FoxO signaling, among others. In summary, succinate plays a crucial role in regulating energy metabolism, protein deposition, and glucose and lipid metabolism homeostasis in Tan sheep through insulin signaling pathways and the interaction of muscle cell factors. By modulating the expression of relevant genes, succinate improves the muscle fiber characteristics of Tan sheep, thereby enhancing production performance and meat quality.
Project description:Firstly, the back muscle samples of Tibetan sheep of the same age were collected for subsequent proteomic analysis. The integrated and analyzed results aimed to identify proteins and pathways associated with meat quality and growth regulation in sheep, thereby providing a theoretical foundation for efficient breeding strategies, reduced breeding time, and development of novel breeds with enhanced production performance.