Project description:Restrictive cardiomyopathy (RCM) is a severe cardiac disorder characterized by impaired ventricular filling and diastolic dysfunction, with mutations in sarcomeric proteins representing major causative factors. Mutations of TNNI3 gene (e.g. p.R192H) constitute major genetic causes of RCM, particularly affecting pediatric patients and being associated with poor prognosis. Here, we demonstrate that adenine base editor (ABE) is able effectively correct RCM-causing mutation and alleviate RCM in a murine model. We first developed a novel murine model harboring the Tnni3R193H mutation that recapitulates the hallmark features of human RCM. Importantly, targeted delivery of ABE via adeno-associated virus (AAV) achieved efficient and precise correction of the Tnni3R193H mutation in adult RCM mice, leading to significant improvement of cardiac functions. Our findings establish base editing as a therapeutic strategy for RCM and highlight its broader potential for treating genetic cardiomyopathies in clinical settings.
2025-04-30 | GSE295799 | GEO
Project description:Functional Correction of CFTR Mutations in Human Airway Epithelial Cells using Adenine Base Editors
| PRJNA745966 | ENA
Project description:A split and inducible adenine base editor for precise in vivo base editing
Project description:Current base editors use DNA deaminases, including cytidine deaminase in cytidine base editor (CBE) or adenine deaminase in adenine base editor (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for base editors capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel base editors, but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
Project description:Adenine and cytosine base editors (ABEs and CBEs) represent a new genome editing technology that allows the programmable installation of A-to-G or C-to-T alterations on DNA. We engineered Streptococcus pyogenes Cas9-based adenine and cytosine base editor (SpACE) that enables efficient simultaneous introduction of A-to-G and C-to-T substitutions in the same base editing window on DNA.
Project description:We evaluate CRISPR-based prime editing for application in organoids. First we model mutations in TP53 in intestinal and hepatocyte oganoids and determine the efficiency and accuracy of mutation induction on multiple targets. Then, to evaluate potential clinical applicability of prime editing we repair mutations in the CFTR channel that cause cystic fibrosis in intestinal organoids. First we repair the CFTR-F508del mutation which is the most common mutation in cystic fibrosis. Then we compare adenine base editing to prime editing by repairing the CFTR-R785* mutation using both strategies.
Project description:We show that delivering the mitochondrial base editor DdCBEs via AAV transduction of somatic cells efficiently produces precise base editing of the intended region.