Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Project description:Virulent bacteriophages (or phages) are viruses that specifically infect and lyse a bacterial host. When multiple phages co-infect a bacterial host, the extent of lysis, dynamics of bacteria-phage and phage-phage interactions are expected to vary. The objective of this study is to identify the factors influencing the interaction of two virulent phages with different Pseudomonas aeruginosa growth states (planktonic, an infected epithelial cell line, and biofilm) by measuring the bacterial time-kill and individual phage replication kinetics. A single administration of phages effectively reduced P. aeruginosa viability in planktonic conditions and infected human lung cell cultures, but phage-resistant variants subsequently emerged. In static biofilms, the phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only by combining phages and meropenem antibiotic. In contrast, adherent biofilms showed tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in the phage-bacterial interaction. The kinetics of adsorption of each phage to P. aeruginosa during single- or co-administration were comparable. However, the phage with the shorter lysis time depleted bacterial resources early and selected a specific nucleotide polymorphism that conferred a competitive disadvantage and cross-resistance to the second phage. The extent and strength of this phage-phage competition and genetic loci conferring phage resistance, are, however, P. aeruginosa genotype dependent. Nevertheless, adding phages sequentially resulted in their unimpeded replication with no significant increase in bacterial host lysis. These results highlight the interrelatedness of phage-phage competition, phage resistance and specific bacterial growth state (planktonic/biofilm) in shaping the interplay among P. aeruginosa and virulent phages.
2024-07-17 | GSE271537 | GEO
Project description:Isolation and characterization of Escherichia coli phages
Project description:The Escherichia coli strain Nissle 1917 (EcN) is used as a probiotic for the treatment of certain gastrointestinal diseases in several European and non-European countries. In vitro studies showed EcN to efficiently inhibit the production of Shiga toxin (Stx) by Stx producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC). The occurrence of the latest EHEC serotype (O104:H4) responsible for the great outbreak in 2011 in Germany was due to the infection of an enteroaggregative E. coli by a Stx 2-encoding lambdoid phage turning this E. coli into a lysogenic and subsequently into a Stx producing strain. Since EHEC infected persons are not recommended to be treated with antibiotics, EcN might be an alternative medication. However, because a harmless E. coli strain might be converted into a Stx-producer after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN towards not only stx-phages but also against the lambda phage. This resistance was not based on the lack of or by mutated phage receptors. Rather the expression of certain genes (superinfection exclusion B (sieB) and a phage repressor (pr) gene) of a defective prophage of EcN was involved in the complete resistance of EcN to infection by the stx- and lambda phage. Obviously, EcN cannot be turned into a Stx producer. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.
2018-06-14 | GSE109932 | GEO
Project description:Isolation and Characterization of Phages against Enterobacter spp
| PRJNA1206754 | ENA
Project description:Isolation and characterization of phages against Dickeya sp.
Project description:Bacteriophage (phage) are viruses that can kill bacteria, but also mediate gene transfer for bacterial evolution. The telomere phages are a curious form using telomere-like structures to replicate their genomes as linear extrachromosomal elements. Here we find that telomere phages are widely distributed in bacteria, being highly prevalent in Klebsiella species. We established a model system to investigate telomere phage biology and find only a small set of phage proteins are expressed in phage-host cells, including a toxin – telocin - that kills other Klebsiella strains. We identify and validate other telocins in the genomes of other, widespread Klebsiella telomere phages. Thus, telomere phages are widespread elements encoding diverse antibacterial weapons and we discuss the prospect of using telocins for precision editing of microbial populations.
Project description:Bacteriophages are potent therapeutics against biohazardous bacteria that are rapidly acquiring multidrug resistance. However, routine administration of bacteriophage therapy is currently impeded by a lack of safe phage production methodologies and insufficient phage characterization. We thus developed a versatile cell-free platform for host-independent production of phages targeting gram-positive and gram-negative bacteria. A few microliters of a one-pot reaction produces effective doses of phages against potentially antibiotic-resistant bacteria such as enterohemorrhagic E. coli (EAEC) and Yersinia pestis, which also possibly pose threats as biological warfare agents. We also introduce a method for transient, non-genomic phage engineering to safely confer additional functions, such as a purification tag or bioluminescence for host detection, for only one replication cycle. Using high-resolution and time-resolved mass spectrometry, we validated the expression of 40 hypothetical proteins from two different phages (T7 and CLB-P3) and identified genes in the genome of phage T7 that express exceptionally late during phage replication. Our comprehensive methodology thus allows for accelerated reverse and forward phage engineering as well as for safe and customized production of clinical-grade therapeutic bacteriophages.