Project description:To investigate genes involved in abdominal fat deposition and fat metabolism of broilers, we used highthroughput sequencing to detect the differentially expressed genes in livers and abdominal fats of broilers which were fed with a normal diet and a high-fat diet, respectively. The broilers began to fed with a normal or a high-fat diet in 1-week-old. After 7 weeks, the broilers were be executed and the livers and abdominal fats were used to extracted total RNAs. Finally, the total RNAs were be sequenced used BGISEQ-500 platform.
Project description:To investigate genes involved in abdominal fat deposition and fat metabolism of broilers with dw gene, we used highthroughput sequencing to detect the differentially expressed genes in livers and abdominal fats of dwarf broilers which were fed with a normal diet and a high-fat diet, respectively. The broilers began to fed with a normal or a high-fat diet in 1-week-old. After 7 weeks, the broilers were be executed and the livers and abdominal fats were used to extracted total RNAs. Finally, the total RNAs were be sequenced used BGISEQ-500 platform.
Project description:The increasing aquaculture production volumes have caused an escalating demand for alternative protein feed ingredients. Agro-industrial by-products such as sunflower meal are relatively abundant and cheap, but the inclusion levels are limited due to the presence of antinutritional factors and fiber. Solid state fermentation is a processing method with the aim of reducing the content of fiber and antinutritional factors and improving nutritional value in plant protein raw materials. In this study, Atlantic salmon (Salmo salar) at two commercial-like fish farms were fed diets containing 5% non-fermented sunflower meal (as a control diet) and two experimental diets with 5% or 10% fermented sunflower meal. The field trial lasted for eight and 11 months in a coastal and fjord location, respectively with the aim of comparing the effect of fermented diets on growth performance, gut microbiota, distal intestine histology and gene expression of Atlantic salmon under different environmental conditions. The findings revealed that diets with fermented sunflower meal sustained growth performance, improved intestinal health by reducing the prevalence of prominent inflammation and ectopic goblet cells and promoted gut lactic acid bacteria Lactiplantibacillus and Lactobaccilaceae after long-term feeding. Our results suggest that fermented sunflower meal is suitable as a protein source for Atlantic salmon when included at a level of up to 10% in the diet.
Project description:Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome and the cecal microbiome in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups (n = 12) and fed three different diets with either 0% (HI0), 7.5% (HI7.5) or 15% (HI15) defatted HI meal for 35 d. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield and apparent ileal digestibility (AID) of 12 amino acids were higher in group HI15 than in group HI0 (P > 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid and isobutyric acid in the cecal digesta were lower in group HI15 than in the other two groups (P > 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs HI0, respectively, (P > 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the three groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.
2024-02-21 | GSE255945 | GEO
Project description:Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms
| PRJNA858635 | ENA
Project description:Effects of cottonseed meal protein hydrolysate on intestinal microbiota of yellow-feather broilers
| PRJNA1031419 | ENA
Project description:Mechanisms of Dietary Inclusion of Cottonseed Meal to Alleviate Malabsorption Syndrome in Broilers
Project description:Abdominal fat (AF) and intramuscular fat (IMF) are key carcass traits in broilers but managing both is challenging due to their contrasting effects. Arginine (Arg) supplementation has potential effect in lipid metabolism, however its tissue specific effect remains poorly understood. The objective of this study was to investigate the tissue specific effect of Arg supplementation on growth performance and fat metabolism in both liver and pectoral muscle in broilers. A total of 480 Arbor Acre chicks were randomly assigned to four groups: Control (0 g/kg), Arg (1.8 g/kg), 5X Arg (9 g/kg) and 10X Arg (18g/kg), with 12 replicates of 10 birds each. Overall, high Arg supplementation (5X, 10X) significantly impaired growth performance, reducing average daily gain and feed intake, accompanied by elevated serum AST and IFN-γ levels (p<0.05). Liver transcriptomics analysis revealed that 10X Arg significantly enriched PPAR signaling pathway, promoting fatty acid oxidation while suppressing lipogenic genes. Conversely, in pectoral muscle, high Arg (10X) promoted intramuscular fat deposition which was associated with downregulation of PPAR-α (p<0.05) and increased expression of key lipogenic genes involved in de novo lipogenesis (SREBP-1c, FAS, ACC and SCD). Moreover, Arg supplementation modulated drug metabolism genes in liver, including EPX and RRM2, suggesting potential impacts on detoxification pathways. These findings underscore the importance of precise Arg dosing to optimize broiler growth, immune function, and carcass quality by targeting its tissue specific metabolic effect.
Project description:High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver. Adult male Wistar rats were fed diets with varying amounts of protein, carbohydrates and fat for 5 weeks. At the end of the experiment, rats were killed and tanscriptome analysis was performed on pooled liver samples.
Project description:In this study we conducted a randomized, controlled, cross-over single-meal study
comparing a meal with highly fermented yogurt and cheese, and a meal with beef
and pork meatballs. Postprandial urine samples from 17 subjects were collected
sequentially after each meal up to 24 hr and analyzed by untargeted metabolomics
through an UHPLC-qTOF.