Project description:Our group recently transcriptomically characterized coculture growth between Streptococcus mutans and several species of commensal streptococci (Rose et al, 2023; Choi et al 2024). One interaction that stood out was with Streptococcus mitis ATCC 49456, which completely inhibited the growth of S. mutans during biofilm formation. This is due to abudant hydrogen peroxide production by S. mitis ATCC 49456, 3-5x higher than other oral commensal streptococci we have worked with. To understand how the transcriptome of S. mutans is modified in coculture with a high hydrogen peroxide producer, we evaluated the transcriptome during monoculture or coculture growth between the two strains. Our results show differential gene expression (DEGs) in S. mutans that follows other trends we have documented previously with other commensal Streptococcus species, as well as DEGs specific to the interaction with S. mitis.
Project description:Intra-amniotic infection, the invasion of microbes into the amniotic cavity resulting in an inflammatory process, is a clinical condition that can lead to adverse pregnancy outcomes for the mother and fetus as well as severe long-term neonatal morbidities. Despite much research focused on the consequences of intra-amniotic infection, there is still little knowledge about the functional roles of innate immune cells that respond to invading microbes. In the current study, we performed RNA sequencing of sorted neutrophils and monocytes/macrophages from amniotic fluid from women with intra-amniotic infection to determine the transcriptomic differences between these innate immune cells. Further, we sought to identify specific transcriptomic pathways that were significantly altered by the maternal or fetal origin of amniotic fluid neutrophils and monocytes, the presence of a severe fetal inflammatory response, and pregnancy outcome (i.e. preterm or term delivery). We showed that significant transcriptomic differences exist between amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection that are indicative of the distinct roles these cells play. We also found that amniotic fluid monocytes/macrophages of fetal origin display impaired ability to clear out microbes invading the amniotic cavity compared to those of maternal origin. Notably, we demonstrate that the transcriptomic changes in amniotic fluid monocytes/macrophages are heavily associated with the severity of the fetal inflammatory response, suggesting that the trafficking of fetal neutrophils throughout the umbilical cord is partially modulated by monocytes/macrophages in the amniotic cavity. Finally, we show that amniotic fluid neutrophils and monocytes/macrophages from preterm deliveries display enhanced transcriptomic activity compared to those from term deliveries, highlighting the protective role of these innate immune cells in this vulnerable period. Collectively, these findings demonstrate the underlying complexity of local innate immune responses in women with intra-amniotic infection, and provide new insights into the functions of amniotic fluid neutrophils and monocytes in the amniotic cavity.
Project description:Preterm birth is a leading cause of neonatal mortality and lacks an effective therapy. Ascending microbial infections from the lower genital tract lead to infection of the placenta, amniotic fluid and fetus causing preterm birth or stillbirth. Directly in the path of an ascending infection is the cervical mucus plug (CMP), a dense mucoid structure in the cervical canal with potential antimicrobial properties. In this study, we aimed to define the components of CMP responsible for antimicrobial activity against a common lower genital tract organism associated with preterm birth and stillbirths, namely Group B Streptococcus (GBS). Using a quantitative proteomic approach, we identified antimicrobial factors in CMPs that were collected from healthy human pregnancies. This study aims to provide new insight into how the human CMP may limit ascending bacterial infection.
Project description:As part of a broader study to identify genes that contribute to fitness of the human pathobiont Streptococcus agalacitae (group B Streptococcus), we identified a GntR-class transcription factor, named mrvR, which contributes to bacterial persistence in human amniotic fluid and multipe virulence phenotypes. In order to understand the transcriptome of mrvR, whole-genome transcriptomic analysis was performed with wild type group B Streptococcus and an mrvR deletion mutant at three growth phases.
Project description:Chlorhexidine (CHX) is a widely used antiseptic agent in dental care due to its broad-spectrum antimicrobial properties. This study focuses on the transcriptomic changes associated with chlorhexidine adaptation in oral Streptococcus salivarius (73_wt, 73_a), Streptococcus vestibularis (78_wt, 78_e), and Streptococcus mitis (93_wt, 93_d) using RNA sequencing.
Project description:Background. For more than 100 years, group A Streptococcus has been identified as a cause of severe, and in many cases fatal, infections of the female urogenital tract. Due to advances in hospital hygiene and the advent of antibiotics, this type of infection has been virtually eradicated. However, within the last three decades there has been an increase in severe intra- and post-partum infections attributed to GAS. Principal Findings. The majority of changes in the GAS transcriptome involved down regulation of multiple adhesins and virulence factors and activation of the stress response. We observed significant changes in genes involved in the arginine deiminase pathway and in the nucleotide de novo synthesis pathway. Conclusions/Significance. Our work provides new insight into how pathogenic bacteria respond to their environment to establish infection and cause disease.
Project description:We evaluated the transcriptional responses of the placenta to intra-amniotic inflammation induced by intra-amniotic LPS injections.
Project description:We evaluated the transcriptional responses of the fetal lung to intra-amniotic inflammation induced by intra-amniotic LPS injections.
Project description:Antibiotic resistance in Streptococcus pneumoniae is often the result of horizontal gene transfer events involving closely related streptococcal species. Laboratory experiments confirmed that S. mitis DNA functions as donor in transformation experiments, using the laboratory strain S. pneumoniae R6 as recipient and chromosomal DNA of a high level penicillin resistant S. mitis B6 strain. After four transformation steps, alterations in five penicillin-binding proteins (PBP) were observed, and sequence analysis confirmed recombination events in the corresponding PBP genes. In order to detect regions where recombination with S. mitis DNA has occurred we analyzed the S. pneumoniae transformants by microarray analyses, using oligonucleotide microarrays designed for the S. pneumoniae genome and the S. mitis B6 genome as well.