Project description:Technology for crosslinking and immunoprecipitation followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To improve the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared to existing methods, Skipper on average calls 3.1-4.2 times more transcriptomic binding sites and sometimes >10 times more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable analysis of CLIP-seq data.
2022-10-08 | GSE213867 | GEO
Project description:skipper butterfly Genome sequencing and assembly
Project description:MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression. Since several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia.