Project description:Olive oil is a primary source of human health-beneficial compounds, establishing olive trees as one of the most vital and valued crop species worldwide. In this study, we performed a transcriptomic analysis across four distinct developmental stages of olive drupes from the emblematic cultivar "Koroneiki".
Project description:Olive (Olea europaea L.) is one of the most economically relevant tree crops in the Mediterranean basin. In this study, a comparative proteomic along with metabolomic-wide investigation was carried out on drupes of Greek olive cultivar 'Chondrolia Chalkidikis', collected across six developmental stages (S), namely seed development (S1, S2), mesocarp development (S3, S4, S5) and full maturation (S6). These stages were first characterized through the dynamics of fruit weight, dimensions and color parameters such as lightness, redness and yellowness. Combined gas chromatography–mass spectrometry and reversed–phase liquid chromatography quadrupole–time–of–flight mass spectrometry (RPLC–QToF–MS) procedures quantified 47 primary (e.g. allose, galactose, quinic acid, sorbitol, stearic acid) and 21 secondary (e.g. elenolic acid, oleacin, rutin, luteolin, hydroxytyrosol) metabolites in mesocarp samples during development. Protein analysis via nano–LC coupled to HDAM Orbitrap mass spectrometer, identified 3258 proteins from which the 350 were differentially accumulated between the final maturation stages (S5 and S6). Olive genome-based functional annotation showed that the largest proportion of identified proteins were involved in primary metabolism [i.e. lipoxygenases (LOX1/5)], energy [i.e. ferredoxin NADP+ reductase (FNR)], signal transduction [i.e. serine/threonine kinases (SAPK2, SRK2A, STK), transcription [i.e. elongation factor 2 (EEF2)] and protein destination [i.e. serine carboxypeptidase (SCPL)]. This investigation provides a reference framework for further nutritional and breeding studies, also allowing cross comparison among other olive cultivars.
Project description:Blueberry is one of the most desirable and nutritious fruits. During fruit development, the blueberry’s organoleptic properties and phytonutrient composition are ever-changing [1]. Blueberry fruit development is typically described in five phases: pads, cups, green, pink, and blue (ripe) [2]. The former two phases are referred to as the initial “expansion”. During expansion, young fruit is generally hard, dark green and distinguishable by size [3]. The latter three phases are referred to as maturation. Green fruit are hard and fully rounded green berries; pink berries are partially pigmented; blue (ripe) berries are fully colored and soft. Fruit maturation has attracted considerable research attention, and typically, the characteristics fruit softening, coloring, and sweetening are assessed [4].
Project description:we used an integrated approach for the elucidation of the reproductive system and mating procedures of the olive fruit fly, Bactrocera oleae. Initially, we performed RNAseq analysis in reproductive tissues of virgin and mated insects. Comparison of the transcriptomes resulted in the identification of genes that are differentially expressed after mating.
Project description:Peel color is a key factor that affects the fruit’s aesthetic and economic values. In Red Sugar pineapple, the peels’ red color reduces during maturation. Limited knowledge is available on the regulation of pineapple peel discoloration, which makes it important to study the molecular mechanisms associated with this important trait. Here, we report that a decrease in anthocyanin biosynthesis is predominantly associated with the pineapple peel color change during maturation. Particularly the exclusive accumulation of cyanidin in 60 days after flowering (DAF) as compared to 120 DAF gives the fruit peel its distinct reddish color. Our findings suggest that the changes in the expression of key structural genes (early and late biosynthetic genes) of the anthocyanin (cyanidin) biosynthesis pathway are responsible for peel discoloration. Based on a gene co-expression analysis and a transient expression, we identified two transcription factors i.e., AcHOX21 and AcMYB12, and showed that their downregulation leads to the reduced anthocyanin accumulation with fruit maturation.
Project description:The ripening process of olive fruits is associated with chemical and/or enzymatic specific transformations making them particularly attractive to animals and humans. Usually, there is a progressive chromatic change characterized by a final red-brown color of both epidermis and mesocarp. This event has an exception in the ‘Leucocarpa’ cultivar, in which we observed the destabilization in the equilibrium between the metabolism on chlorophyll and that of the other pigments, particularly the anthocyanins, whose switch-off during maturation promotes the white coloration of the fruits. Recently, transcription profiling of ripening olives from ‘Leucocarpa’ and ‘Cassanese’ cultivars, through an Illumina RNA-seq approach, has provided some information about genes involved in fruit maturation as flavonid and anthocyanin transcripts. To study the possible gene differences involved in flavonoids and anthocyanins biosynthetic pathways during ripening possibly caused by small nuclear RNA (snRNA) in olive drupes, the snRNA libraries of fruit ripening from ‘Leucocarpa’ and ‘Cassanese’ were constructed with RNAs from drupes at 100 and 130 DAF (Days After Flowering) and sequenced by Illumina approach. Comparing sequence information, 130 conserved microRNAs (miRNA) in the Viridiplantae were detected belonging 14 miRNA families. For the remaining read not-matched with known miRNAs in the Viridiplantae, we combined secondary structure and minimum free energy to discover novel olive miRNAs. Based on these analyses, 492 miRNAs were considered as putative novel. To increase insights into the functions of known and putative novel miRNA in olive, putative target genes were computationally predicted by alignment with the olive drupe transcripts obtained from the same samples. A total of 32 and 186 transcripts were predicted as targets of 130 known and 492 putative novel miRNA, respectively. The identified target genes are involved in a broad range of biological processes. Interestingly, some genes involved in negative regulation of anthocyanin metabolic process, were identified as target of miR168 suggesting that this miRNA family is likely operative during color transition in olive.
Project description:We performed transcriptome analyses throughout fruit development using the tomato cultivar M82 and its near-isogenic line IL8-3, with interesting and useful traits such as a high content of soluble solids. To identify genes that show differential expression between M82 and IL8-3 fruits, we used a custom microarray containing 43,803 tomato probes. Some genes, such as cell wall invertase and sucrose synthase genes, which are encoded by LIN6 (Solyc10g083290) and TOMSSF (Solyc12g009300) respectively, are well known to play a key role in the sink function of fruit. In this study, the levels of LIN6 and TOMSSF transcripts were higher in IL8-3 than in M82 fruit at 20 and 30 DAF, which are developmental stages for starch accumulation and increased hexose content, respectively, in IL8-3 fruit (Ikeda et al. 2013), and decreased to the level of M82 at ripening stage. Similar patterns were observed in many metabolites of glycolysis and the pentose phosphate pathway as well as metabolites in starch and sucrose metabolism. Gene expressions during fruit development were analyzed. Three biological replicates were prepared for each stage, and a total of 24 samples were analyzed.
Project description:Background The set of all mRNA molecules present in a cell constitute the transcriptome. The transcriptome varies depending on cell type as well as in response to internal and external stimuli during development. Chili pepper is an economically and culturally important horticultural crop as well as a good model for the study of secondary metabolism during fruit development. Here we present a study of the changes that occur in the transcriptome of chili pepper fruit during development and ripening. Results RNA-Seq was used to obtain transcriptomes of whole Serrano-type chili pepper fruits (Capsicum annuum L.; 'Tampiqueno 74') collected at 10, 20, 40 and 60 days after anthesis (DAA). 15,550,468 Illumina MiSeq reads were assembled de novo into 34,066 chili genes. We classified the expression patterns of individual genes as well as genes grouped into Biological Process ontologies and Metabolic Pathway categories using statistical criteria. For the analyses of gene groups we added the weighted expression of individual genes. This method was effective in interpreting general patterns of expression changes and increased the statistical power of the analyses. Subsets of genes were expressed only at a single time point sampled (1,278, 1,596, 1,519 and 1,583 genes at 10, 20, 40 and 60 DAA, respectively). We also estimated the variation in diversity and specialization of the transcriptome during chili pepper development. Approximately 17% of genes exhibited a significant change of expression in at least one of the intervals sampled. In contrast, significant differences in approximately 63% of the Biological Processes and 80% of the Metabolic Pathways studied were detected in at least one interval. Confirming previous reports, genes related to capsaicinoid and ascorbic acid biosynthesis were significantly upregulated at 20 DAA while those related to carotenoid biosynthesis were highly expressed in the last period of fruit maturation (40-60 DAA). Our RNA-Seq data was validated by examining the expression of nine genes involved in carotenoid biosynthesis by qRT-PCR. Conclusions In general, more profound changes in the chili fruit transcriptome were observed in the intervals between 10 to 20 and 40 to 60 DAA. The last interval, between 40 to 60 DAA, included 49% of all significant changes detected, and was characterized predominantly by a global decrease in gene expression. This period signals the end of maturation and the beginning of senescence of chili pepper fruit. The transcriptome at 60 DAA was the most specialized and least diverse of the four states sampled.
Project description:Although pear is an important edible fruit species, the current available genomic information is limited. Combining the Solexa/ Illumina RNA-seq high-throughput sequencing approach with Digital Gene Expression (DGE) analysis results in a powerful transcriptomic study. This publication reports the transcriptome profiling analysis of Pyrus bretschneideri Rehd. using RNA-seq and DGE in order to better understand the molecular mechanisms underlying biological aspects of pear, especially fruit development and maturation.Using high-throughput Illumina RNA-seq combined with a tag-based Digital Gene Expression (DGE) system, de novo transcriptome assembly and gene expression analysis of P. bretschneideri were performed at an unprecedented depth (5.47 gigabase pairs). Approximately 60.77 million reads were obtained, trimmed, and assembled into 90,227 unigenes. The unigenes comprised 17,619 contig clusters and 72,608 singletons and were an average length of 508 bp and had an N50 of 635 bp. Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 61,636 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. 34.6% of the unigenes (31,215) were annotated against KEGG into 121 known metabolic or signaling pathways. DGE libraries of five different developmental fruit stages were constructed and analyzed, and the gene expression variations between two consecutive stages were compared. Thousands of genes showed significantly different expression levels based on the various comparisons. Extensive transcriptome and DGE profiling data have been obtained from the deep sequencing of the Chinese white pear, which can serve as an important public information platform for gene expression, genomic, and functional genomic studies in P. bretschneideri and which provides comprehensive gene expression information at the transcriptional level that could facilitate understanding of the molecular mechanisms in fruit development and maturation.
Project description:Proteins and peptides are minor components of vegetal oils. The presence of these compounds in virgin olive oil was first reported in 2001, but the nature of the olive oil proteome is still a puzzling question for food science researchers. In this project, we have compiled for a first time a comprehensive proteomic dataset of olive fruit and fungal proteins that are present at low but measurable concentrations in a vegetable oil from a crop of great agronomical relevance as olive (Olea europaea L.). Accurate mass nLC-MS data were collected in high definition direct data analysis (HD-DDA) mode using the ion mobility separation step. Protein identification was performed using the Mascot Server v2.2.07 software (Matrix Science) against an ad hoc database made of olive protein entries. Starting from this proteomic record, the impact of these proteins on olive oil stability and quality could be tested. Moreover, the effect of olive oil proteins on human health and their potential use as functional food components could be also evaluated. In addition, this dataset provides a resource for use in further functional comparisons across other vegetable oils, and also expands the proteomic resources to non-model species, thus also allowing further comparative inter-species studies.