Project description:Meadow brown butterflies (Maniola jurtina) on the Isles of Scilly represent an ideal model in which to dissect the links between genotype, phenotype and long-term patterns of selection in the wild - a largely unfulfilled but fundamental aim of modern biology. To meet this aim, a clear description of genotype is required. Here we present the draft genome sequence of M. jurtina to serve as a founding genetic resource for this species. Seven libraries were constructed using pooled DNA from five wild caught spotted females and sequenced using Illumina, PacBio RSII and MinION technology. A novel hybrid assembly approach was employed to generate a final assembly with an N50 of 214 kb (longest scaffold 2.9 Mb). The sequence assembly described here predicts a gene count of 36,294 and includes variants and gene duplicates from five genotypes. Core BUSCO (Benchmarking Universal Single-Copy Orthologs) gene sets of Arthropoda and Insecta recovered 90.5% and 88.7% complete and single-copy genes respectively. Comparisons with 17 other Lepidopteran species placed 86.5% of the assembled genes in orthogroups. Our results provide the first high-quality draft genome and annotation of the butterfly M. jurtina.
Project description:We present a genome assembly from an individual female Maniola jurtina (the meadow brown; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 402 megabases in span. The complete assembly is scaffolded into 30 chromosomal pseudomolecules, with the W and Z sex chromosome assembled. Gene annotation of this assembly on Ensembl has identified 12,502 protein coding genes.
Project description:The use of DNA sequence data often leads to the recognition of cryptic species within putatively well-known taxa. The opposite case, detecting less diversity than originally described, has, however, far more rarely been documented. Maniola jurtina, the Meadow Brown butterfly, occurs all over Europe, whereas all other six species in the genus Maniola are restricted to the Mediterranean area. Among them, three are island endemics on Sardinia, Cyprus, and Chios, respectively. Maniola species are almost indistinguishable morphologically, and hybridization seems to occur occasionally. To clarify species boundaries and diversification history of the genus, we reconstructed the phylogeography and phylogeny of all seven species within Maniola analyzing 138 individuals from across its range using mitochondrial and nuclear genetic markers. Examination of variation in mitochondrial and nuclear DNA surprisingly revealed a case of taxonomic "oversplitting". The topology of the recovered phylogenetic tree is not consistent with accepted taxonomy, but rather reveals haplotype clades that are incongruent with nominal species boundaries: instead of seven species, we recognized only two major, yet incompletely segregated, lineages. Our results are consistent with the hypothesis that Maniola originated in Africa. We suggest that one lineage dispersed over the Strait of Gibraltar and the Iberian Peninsula to the west of Europe, while the other lineage spreads eastward through Asia Minor and over the Bosporus to Eastern Europe.