Project description:The gut bacterium Parabacteroides spp. has been increasingly recognized for its therapeutic potential in treating metabolic disorders. However, the role of Parabacteroides johnsonii in metabolic disorders has never been reported. Here, we found that the abundance of P. johnsonii in the feces was negatively correlated with the blood glucose and lipid levels of obese patients. Oral administration of live P. johnsonii improved the metabolic dysfunction in high fat diet (HFD)-fed mice, accompanied by the alleviation of leaky gut and the systemic inflammation. P. johnsonii enhanced the catabolism of branched-chain amino acids (BCAAs) to branched-chain short-chain fatty acids (BSCFAs) in gut. Particularly, the conversion of valine to isobutyrate was correlated to the symptoms of obese patients. Isobutyrate intervention mirrored the favourable effects of P. johnsonii on HFD-fed mice. Isobutyrate increased H3K14 acetylation at Fgf1b promoters and activated its transcription through inhibition of HDAC3 in colon, thereby maintaining the intestinal barrier integrity. The natural product stachyose exhibited its anti-obesity effects by promoting the growth of P. johnsonii. Our findings provided mechanistic insights into the therapeutic potential of P. johnsonii, isobutyrate and stachyose in treating metabolic disorders.
Project description:The mammalian gastrointestinal tract contains a diverse ecosystem of microbial species collectively making up the gut microbiome. Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development. Consumption of unhealthy yet palatable dietary factors associated with obesity and metabolic dysfunction (e.g., saturated fat, added sugar) produces microbiota dysbiosis and negatively impacts neurocognitive function, particularly when consumed during early life developmental periods. Here we explore whether excessive early life consumption of added sugars negatively impacts neurocognitive development via the gut microbiome. Using a rodent model of habitual sugar-sweetened beverage (SSB) consumption during the adolescent stage of development, we first show that excessive early life sugar intake impairs hippocampal-dependent memory function when tested during adulthood while preserving other neurocognitive domains. Gut microbiome genomic sequencing analyses reveal that early life SSB consumption alters the abundance of various bacterial populations, including elevations in operational taxonomic units within the genus Parabacteroides (P. distasonis and P. johnsonii) whose abundance negatively correlated with memory task performance. Additional results reveal that in vivo Parabacteroides enrichment of cultured P. distasonis and P. johnsonii bacterial species in adolescent rats severely impairs memory function during adulthood. Hippocampus transcriptome analyses identify gene expression alterations in neurotransmitter synaptic signaling, intracellular kinase signaling, metabolic function, neurodegenerative disease, and dopaminergic synaptic signaling-associated pathways as potential mechanisms linking microbiome outcomes with memory impairment. Collectively these results identify microbiota dysbiosis as a mechanism through which early life unhealthy dietary patterns negatively impact neurocognitive outcomes.
Project description:Whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for comparative genomic hybridization (CGH) of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. iatae BL263 (CECT 7394T). In these experiments, the fluorescence ratio distributions obtained with L. iatae and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. iatae and L. gasseri, respectively. These results confirmed the separate status of L. iatae from L. johnsonii at the level of species, and also that it is closer to L. johnsonii than L. gasseri. L. johnsonii, L. gasseri, and L. iatae strains were hybridized versus L. johnsonii NCC533, some with replicates
Project description:Whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for comparative genomic hybridization (CGH) of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. iatae BL263 (CECT 7394T). In these experiments, the fluorescence ratio distributions obtained with L. iatae and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. iatae and L. gasseri, respectively. These results confirmed the separate status of L. iatae from L. johnsonii at the level of species, and also that it is closer to L. johnsonii than L. gasseri.
Project description:Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to decreased levels of brain BCAAs, abnormal mRNA translation and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.
Project description:Shifts in the gut microbiota composition, called dysbiosis, have been directly associated with acute and chronic diseases. However, the underlying biological systems connecting gut dysbiosis to systemic inflammatory pathologies are not well understood. Phospholipids (PLs) act as precursors of both, bioactive inflammatory and resolving mediators. Their dysregulation is associated with chronic diseases including cancer. Gut microbial-derived lipids are structurally unique and capable of modulating host’s immunity. Lactobacillus johnsonii N6.2 is a Gram-positive gut symbiont with probiotic characteristics. L. johnsonii N6.2 reduces the incidence of autoimmunity in animal models of Type 1 Diabetes and improves general wellness in healthy volunteers by promoting, in part, local and systemic anti-inflammatory responses. By utilizing bioassay-guided fractionation methods with bone marrow-derived dendritic cells (BMDCs), we report here that L. johnsonii N6.2 purified lipids induce a transcriptional signature that resembles that of migratory (mig)DCs. RNAseq-based analysis showed that BMDCs stimulated with L. johnsonii N6.2 total lipids upregulate maturation-mig related genes Cd86, Cd40, Ccr7, Icam1 along with immunoregulatory genes including Itgb8, Nfkbiz, Jag1, Adora2a, IL2ra, Arg1, and Cd274. Quantitative reverse transcription (qRT)-PCR analysis indicated that PLs are the bioactive lipids triggering the BMDCs response. Antibody-blocking of surface Toll-like receptor (TLR)2 resulted in boosted PL-mediated upregulation of pro-inflammatory Il6. Chemical inhibition of the IKKα kinase from the non-canonical NF-κB pathway specifically restricted upregulation of Il6 and Tnf. Phenotypically, PL-stimulated BMDCs display an immature like-phenotype with significantly increased surface ICAM-1. This study provides insight into the immunoregulatory capacity of Gram-positive, gut microbial-derived phospholipids on innate immune responses.