Project description:Experimentally mapped transcriptome structure of Pyrococcus furiosus DSM 3638 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 16 nt).
Project description:Experimentally mapped transcriptome structure of Pyrococcus furiosus DSM 3638 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 16 nt). Pyrococcus furiosus DSM 3638 growth curve experiments were conducted in batch culture. Reference samples were cultured at mid-log phase (OD600 = 0.096). Seven samples were collected that spanned the key phases of the growth curve. Total RNA from samples of growth curve and reference were directly labeled with Cy3 or Cy5, and were hybridized to the tiling array. Dye-flip experiments were done for each sample. Log ratios were calculated for each probe (growth curve sample/reference). Transcriptome browser is available at http://baliga.systemsbiology.net/enigma/.
Project description:Oxidative Stress Protection and the Repair Response To Hydrogen Peroxide in the Hyperthermophilic Archaeon Pyrococcus furiosus Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in cessation of growth with a 2 hour lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H2O2 were not more resistant to the subsequent addition of H2O2 (0.5 â 5.0 mM). Consequently, there is little if any induced protective response to peroxide, rather, the organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin and alkyl hydroperoxide reductase I. The related hyperthermophiles P. woesei and Thermococcus kodakaraensis were more sensitive to peroxide than P. furiosus, apparently due to the lack of several of its peroxide-responsive ORFs. Pyrococcus furiosus (DSM 3638) was grown at 95°C in a 20-liter fermentor using maltose as the carbon and energy source. An exponential-phase culture of P. furiosus that had undergone three successive transfers in the experimental medium was used to inoculate the 20-liter fermentor. The culture was shocked with 0.5 mM of hydrogen peroxide (H2O2) when cell density was in mid-exponential phase (~ 5.0 ´ 107 cells/ml, as determined by direct microscopic cell count). To obtain RNA for microarray and for quantitative PCR (QPCR) analyses, samples (2 liter) were rapidly removed from the fermentor and cooled to 4°C. Total RNA was extracted using acid-phenol and stored at -80°C until needed. A total of 3 biological replicates in triplicate (3 copies on the same slide) was used in the data set.
Project description:Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.