Project description:The complete mitochondrial genome of Gerres filamentosus was sequenced by high throughput sequencing method. Length of this genome is 16,795 bp, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one large non-coding region. ND6 and eight tRNA genes are encoded by L-strand, and others are encoded by H-strand, which is similar to those in most vertebrates. Phylogenetic tree based on 13 protein-coding genes shows that the clade of G. filamentosus is closely clustered with that of Gerres oyena, and families Caproidae and Ephippidae have the closest relationship to Gerridae, comparing with Sillaginidae.
Project description:The saddleback silver-biddy Gerres limbatus (Cuvier 1830) is distributed in Indo-West Pacific Oceans and associated with shallow coastal marine waters and estuaries. In this study, the complete mitochondrial genome of G. limbatus was firstly documented, which is 16,730 bp in length, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The overall base composition of the mitochondrial genome is 26.42% A, 28.68% C, 27.32% T, and 17.58% G. The Maximum Likelihood phylogenetic tree was constructed based on COI gene of the 31 species from the family Gerreidae, with Heteroclinus puellarum and Hypopterus macropterus as outgroups. It revealed that G. erythrourus was placed as the sister group to G. limbatus.
Project description:Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.
| S-EPMC7084342 | biostudies-literature
Project description:Characteristics and phylogenetic analysis of the complete mitochondrial genome of Gerres limbatus (Cuvier, 1830) (Perciformes: Gerreidae)
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.