Project description:Gut microbiota has profound effects on obesity and associated metabolic disorders. Targeting and shaping the gut microbiota via dietary intervention using probiotics, prebiotics and synbiotics can be effective in obesity management. Despite the well-known association between gut microbiota and obesity, the microbial alternations by synbiotics intervention, especially at the functional level, are still not characterized. In this study, we investigated the effects of synbiotics on high fat diet (HFD)-induced metabolic disorders, and systematically profiled the microbial profile at both the phylogenetic and functional levels. Synbiotics significantly reversed the HFD-induced change of microbial populations at the levels of richness, taxa and OTUs. Potentially important species Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of synbiotics were identified. At the functional level, short chain fatty acid and bile acid profiles revealed that interventions significantly restored cecal levels of acetate, propionate, and butyrate, and synbiotics reduced the elevated total bile acid level. Metaproteomics revealed the effect of synbiotics might be mediated through pathways involved in carbohydrate, amino acid, and energy metabolisms, replication and repair, etc. These results suggested that dietary intervention using our novel synbiotics alleviated HFD-induced weight gain and restored microbial ecosystem homeostasis phylogenetically and functionally.
2022-02-22 | PXD009564 | Pride
Project description:Gut microbiota in Litopenaeus vannamei fed synbiotics, paraprobiotics, and postbiotics
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Lymphoma remains a substantial global health concern, necessitating innovative therapeutic strategies. The emerging role of gut microbiota-derived metabolites, known as postbiotics, offers promising avenues for cancer treatment. This study evaluated the antiproliferative activities of various postbiotics, including Nisin (N) and urolithin B (UB), and their combinations against the human lymphoma cell line HKB-11. Systematically, the antiproliferative effects and underlying mechanisms were characterised using Alamar Blue assays, combination index (CI) analyses, ROS measurements, flow cytometry, and bottom-up proteomics analyses of combined and mono-treatments. Nisin and UB demonstrated significant antiproliferative activity with IC50 values of 1467 µM and 87.56 µM, respectively. Among other ratios, their combination at a ratio of 4:6 exhibited potent synergy (CI =0.09 at IC95), notably enhancing apoptosis (p < 0.0001) and modulating ROS levels. Proteomics analyses identified key protein alterations involved in lipid metabolism, mitochondrial function, cell cycle progression, and apoptosis.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:Short-chain fatty acids (SCFAs) are microbial metabolites, also known as postbiotics, produced by the gut microbiotame, playing essential rolesessential in maintaining gut health and exerting potential anticancer effects. This study investigates the antiproliferative effects of short-chain fatty acids (SCFAs) salts—magnesium acetate (A), sodium propionate (P), and sodium butyrate (B)—and their combinations with dexamethasone (Dex) in AGS gastric adenocarcinoma cells.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:A high-sugar diet induces lifestyle-associated metabolic diseases, such as obesity and diabetes, which may underlie the pro-tumor effects of a high-sugar diet. We supplied GL261 syngeneic glioblastoma (GBM) model mice with a short-term high-glucose diet (HGD) and found an increased survival rate with no evidence of metabolic disease. Modulation of the gut microbiota by an HGD was critical for enhancing the anti-tumor immune response. Single-cell RNA sequencing showed that modulation of the gut microbiota by an HGD increased the T cell-mediated anti-tumor immune response in GBM mice. We found that the cytotoxic CD4+ T cell population in GBM mice increased due to synergy with anti-PD-1 immune checkpoint inhibitors, but this depended on an HGD. Thus, we determined that an HGD enhanced anti-tumor immune responses in GBM mice through changes in the gut microbiota and suggest that the role of an HGD in GBM should be re-examined.
Project description:In the presented study, in order to unravel gut microbial community multiplicity and the influence of maternal milk nutrients (i.e., IgA) on gut mucosal microbiota onset and shaping, a mouse GM (MGM) was used as newborn study model to discuss genetic background and feeding modulation on gut microbiota in term of symbiosis, dysbiosis and rebiosis maintenance during early gut microbiota onset and programming after birth. Particularly, a bottom-up shotgun metaproteomic approach, combined with a computational pipeline, has been compred with a culturomics analysis of mouse gut microbiota, obtained by MALDI-TOF mass spectrometry (MS).
Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.