Project description:Lysine succinylation (Ksu) is a novel identified post-translational modification that conserved from prokaryote to eukaryotes. As a kind of acylation, Ksu was reported to have different functions with others acylation at lysine residue. However, recently studies on the Ksu mainly focus on the plants and bacterial, there are still very rare studies in the vertebrate. Therefore, the biological role of succinylation remains largely unknown in mammal. In this study, we performed global Ksu mapping in Danio rerio (zebrafish) using mass spectrometry-based proteomics with enrichment of Ksu peptides by immunoprecipitation technology. As a result, we totally identified 552 Ksu sites in 164 proteins. Compared with our previous studies on lysine acetylation and crotonylation, Ksu plays a major role in a diverse metabolic process, such as carbon metabolism and tricarboxylic acid circle. In addition, we defined 5 new succinylation motifs: (su)KA, (suc)KxxxxA, (su)KxxxxL, (su)KxA, (su)KxV. In conclusion, our result provides proteome-wide database for study of Ksu in zebrafish and our bioinformatics result facilitated the understanding of the Ksu in the role of central metabolism.
Project description:Take-all is a devastating soil-borne disease that affects wheat production. The continuous generation of disease-resistance germplasm is an important aspect of the management of this pathogen. In this study, we characterized the wheat-Psathyrostachys huashania Keng-derived progeny H139 that exhibits significantly improved resistance to wheat take-all disease compared with its susceptible parent 7182. GISH) and mc-FISH analyses revealed that H139 is a stable wheat-P. huashania disomic substitution line lacking wheat chromosome 2D.EST-STS marker and Wheat Axiom 660K Genotyping Array analysis further revealed that H139 was a novel wheat-P. huashania 2Ns/2D substitution line, and that the P. huashania 2Ns chromosome shares high sequence similarity to wheat chromosome 2D. These results indicate that H139, with its enhanced wheat take-all disease resistance and desirable agronomic traits, provides valuable genetic resources for wheat chromosome engineering breeding.
Project description:Characterization of the fitness landscape, a representation of fitness for a large set of genotypes, is key to understanding how genetic information is interpreted to create functional organisms. Here, we reconstruct the evolutionarily-relevant segment of the fitness landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing on combinations of amino acid states found at orthologous sites of extant species. We find that the His3 fitness landscape is dominated by synergistic epistasis, such that the cumulative effect of amino acid substitutions causes a dramatic decline in fitness. Furthermore, in 63% of sites substitutions were strongly positive in one genetic background and strongly negative in another, with 41% of sites showing reciprocal sign epistasis. This sign epistasis, present in proportionally few genotypes, was caused by simultaneous interaction of multiple sites with demonstrating a complex multidimensional nature of the His3 fitness landscape.
Project description:A fitness landscape (FL) describes the genotype-fitness relationship in a given environment. To explain and predict evolution, it is imperative to measure the FL in multiple environments because the natural environment changes frequently. Using a high-throughput method that combines precise gene replacement with next-generation sequencing, we determine the in vivo FL of a yeast tRNA gene comprising over 23,000 genotypes in four environments. Although genotype-by-environment interaction (G×E) is abundantly detected, its pattern is so simple that we can transform an existing FL to that in a new environment with fitness measures of only a few genotypes in the new environment. Under each environment, we observe prevalent, negatively biased epistasis between mutations (G×G). Epistasis-by-environment interaction (G×G×E) is also prevalent, but trends in epistasis difference between environments are predictable. Our study thus reveals simple rules underlying seemingly complex FLs, opening the door to understanding and predicting FLs in general.
Project description:This phase I clinical trial tests the immune effects of fermented wheat germ in patients with advanced solid tumor cancers who are being treated with standard of care checkpoint inhibitors. Fermented wheat germ is a nutritional supplement that some claim is a "dietary food for special medical purposes for cancer patients" to support them in treatment. There have also been claims that fermented wheat germ is "clinically proven" and "recognized by medical experts" to "enhance oncological treatment" and boost immune response to cancer; however, there are currently no documented therapeutic effects of fermented wheat germ as a nutritional supplement. Checkpoint inhibitors, given as part of standard of care for advanced solid tumors, are a type of immunotherapy that may help the body’s immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. The information gained from this trial may allow researchers to determine if there is any value of giving fermented wheat germ with standard of care checkpoint inhibitors for patients with advanced solid tumor malignancies.
Project description:Centromeres typically contain repeat sequences, but centromere function does not necessarily depend on these sequences. In aneuploid wheat (Triticum aestivum) and wheat distant hybridization offspring, we found functional centromeres with dramatic changes to centromeric retrotransposon of wheat (CRW) sequences. CRW sequences were greatly reduced in the ditelosomic lines 1BS, 5DS, 5DL, and a wheat-Thinopyrum elongatum addition line. CRWs were completely lost in the ditelosomic line 4DS, but a 994 kb ectopic genomic DNA sequence was involved in de novo centromere formation on the 4DS chromosome. In addition, two ectopic sequences were incorporated in a de novo centromere in a wheat-Th. intermedium addition line. Centromeric sequences were also expanded to the chromosome arm in wide hybridizations. Stable alien chromosomes with two and three regions containing centromeric sequences were found in wheat-Th. elongatum hybrid derivatives, but only one is functional. In wheat-rye (Secale cereale) hybrids, rye centromere specific sequences spread to the chromosome arm and may cause centromere expansion. Thus, distant wheat hybridizations cause frequent and significant changes to the centromere via centromere misdivision, which may affect retention or loss of alien chromosomes in hybrids.