Project description:Little is known regarding the relationship between Selenium (Se) concentrations in the liver and liver gene expression. Because most cow-calf operations in Se-poor soils provide enough Se in mineral mixes to avoid deficiency, the aim of this study was to determine the effects of 4 Se form supplementation strategies (none or inorganic, organic, or 1:1 inorganic:organic mix) on liver gene expression profiles using a Se-adequate model. Microarray analysis was conducted using the custom WT Btau 4.0 Array (version 1; GeneChip, Affymetrix, Inc., Santa Clara, CA, USA) to determine if dietary Se supplementation form differentially affects the hepatic gene expression profiles of maturing beef heifers. Sodium selenite was used as the source of inorganic Se and Se-enriched yeast was the source of organic selenium. Thirty-six Angus heifers (BW 400 ± 9.0 kg) were ranked on the Se concentration of their biopsied (day -14) liver sample and randomly assigned to one of four dietary Se treatments: Control (Ctrl) group received no exogenous dietary Se supplementation; inorganic (ISe) treatment group received daily dietary Se supplementation at 3 mg/ animal of the ISe form; organic (OSe) treatment group received daily dietary Se supplementation of 3 mg/ animal of OSe form; and the mix (1:1 ISe:OSe) received daily dietary Se supplementation of 3 mg/ animal of 50:50 mix of ISe and OSe forms. RNA was extracted from biopsied liver samples taken 168 days after initiation of Se supplementation and microarray analyses were conducted.
Project description:Little is known regarding the relationship between Selenium (Se) concentrations in the liver and liver gene expression. Because most cow-calf operations in Se-poor soils provide enough Se in mineral mixes to avoid deficiency, the aim of this study was to determine the effects of 4 Se form supplementation strategies (none or inorganic, organic, or 1:1 inorganic:organic mix) on liver gene expression profiles using a Se-adequate model. Microarray analysis was conducted using the custom WT Btau 4.0 Array (version 1; GeneChip, Affymetrix, Inc., Santa Clara, CA, USA) to determine if dietary Se supplementation form differentially affects the hepatic gene expression profiles of maturing beef heifers.
Project description:Selenium (Se) is an essential nutrient for beef cattle health and commercial production. The molecular mechanisms responsible for the physiological responses of the animal to dietary Se supplementation, however, have not been evaluated. Furthermore, the potential effect of two chemical forms (organic vs. inorganic) of Se on gene expression by Se-sufficient cattle has not been evaluated. Microarray analysis using the GeneChip Bovine Genome Array (Affymetrix, Inc., Santa Clara, CA) was conducted to determine if dietary Se supplementation in organic vs. inorganic form (OSe vs. ISe) differentially affects the liver gene expression profile in growing beef heifers.
Project description:Selenium (Se) is an essential nutrient for beef cattle health and commercial production. The molecular mechanisms responsible for physiological responses of the animal to dietary Se supplementation, however, have not been evaluated. Furthermore, the potential effect of two chemical forms (organic vs. inorganic) of Se on gene expression by Se-sufficient cattle has not been evaluated. Microarray analysis using the GeneChip Bovine Genome Array (Affymetrix, Inc., Santa Clara, CA) was conducted to determine if dietary Se supplementation in organic vs. inorganic form (OSe vs. ISe) differentially affects the liver gene expression profile in growing beef heifers. Sodium selenite (Prince Se Concentrate; Prince Agri Products, Inc., Quincy, IL) was used as the source of ISe form. Se-enriched yeast (Sel-Plex; Alltech, Inc., Nicholasville, KY) was used as the source of OSe form. Thirty Angus heifers (BW 393 ± 9 kg) were randomly assigned to 3 dietary treatments (n = 10): Control (Ctrl) group received no dietary Se supplementation; ISe treatment group daily received dietary supplementation of Se at 3 mg/animal from ISe source; OSe treatment group daily received dietary supplementation of Se at 3 mg/animal from OSe source. Six animals were randomly selected from each of 3 treatment groups for RNA extraction and microarray analysis.
Project description:Selenium (Se) is an essential cofactor of the antioxidant enzyme glutathione peroxidase beside other functions. The evaluation of optimal selenium supplementation in chicken feed and the subsequent effects on animal health and performance requires comprehensive knowledge of the overall metabolic effects of selenium. Therefore the gene expression was measured in the control group with a standard diet and in the group with a Se supplemented diet (0.5mg Se/kg diet) to determine significantly altered gene expression. The selenium was supplemented in the form of selenized yeast (Se-yeast), which mainly consists of organic Se in the form of L-selenomethionine and L-selenocysteine. The control group received a diet, which contained 70μg of Se / kg diet and the Se-yeast group 620μg of Se / kg diet (analyzed).
Project description:Selenium (Se) is an essential cofactor of the antioxidant enzyme glutathione peroxidase beside other functions. The evaluation of optimal selenium supplementation in chicken feed and the subsequent effects on animal health and performance requires comprehensive knowledge of the overall metabolic effects of selenium. Therefore the gene expression was measured in the control group with a standard diet and in the group with a Se supplemented diet (0.5mg Se/kg diet) to determine significantly altered gene expression. The selenium was supplemented in the form of selenized yeast (Se-yeast), which mainly consists of organic Se in the form of L-selenomethionine and L-selenocysteine. The control group received a diet, which contained 70μg of Se / kg diet and the Se-yeast group 620μg of Se / kg diet (analyzed). The one-day old broiler chicks were separated into two groups and received the control or the Se-supplemented diet ad libitum for 35 days. After slaughter the gene expression was determined in the liver of four control and five samples from the Se-yeast group. One sample from the control group did not correspond to the quality requirements and was excluded from the analysis.
Project description:Background: Consumption of high fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in mouse offspring fed a high fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results: Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions: Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets during gestation and lactation can alter global DNA methylation in liver. This may be one mechanism by which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.
Project description:Background & aim: Micronutrient deficiencies, particularly those of zinc and selenium, are common in persons living with human immunodeficiency virus (PLWHIV), and have been associated with the development of non-AIDS related comorbidities, impaired immune system function, HIV disease progression and mortality. The implementation of intervention strategies on clinically stable long-term-treated PLWHIV could bring potential benefits on impeding or delaying the onset of non-AIDS associated comorbidities, improving their health status and overall quality of life. The aim of the present study is to analyze the effect of zinc and selenium supplementation on body composition, bone mineral density (BMD), lipids profile, glucose and immune system activation and function on PLWHIV on antiretroviral therapy (ART) without metabolic diseases. Methods: This pilot trial was composed of 60 PLWHIV on ART who were randomly assigned to either zinc, selenium, zinc + selenium supplementation or to a control group. Daily supplementation was prescribed during 6 months as follows: the zinc group received 30 mg of zinc gluconate, the selenium group received 200 mcg of selenium yeast and the zinc + selenium group received both micronutrients at the same doses and presentations. Individuals in the control group were followed during the same time without any nutritional supplementation. Body composition (weight, body mass index [BMI], fat mass and muscle mass), BMD, blood pressure, blood biochemical parameters (cholesterol, glucose and triglycerides), serum zinc and selenium concentrations, CD4+ T cell count and CD4+ and CD8+ T cells immune activation were assessed before and after supplementation. One individual of each supplementation group and one of the control group were analyzed for single cell transcriptomics before and after supplementation. Results: BMI (p=0.03), fat mass in kg (p=0.03) and percentage (p=0.02), as well as trunk fat (p=0.01), were significantly decreased after selenium supplementation. No changes were observed for body composition, BMD, biochemical determinations or blood pressure on the other intervention groups after supplementation (p>0.05 in all cases). The CD4+ T cells frequency and count significantly increased after selenium and zinc supplementation (p=0.03, p=0.05 respectively). CD4+ and CD8+ T-cell immune activation did not change after supplementation (p>0.05 in both cases). On the single cell transcriptome analysis, zinc and selenium supplementation significantly change de expression of genes associated with the function of naive and memory CD8+ T cells (adjusted p<0.05 in all cases). Conclusions: Selenium supplementation have beneficial effects on the body composition, while zinc and selenium supplementation increased CD4+ T cell replenishment of PLWHIV on long-term ART without metabolic diseases. Additionally, zinc and selenium supplementation modified the expression of genes associated with the function of naive and memory CD8+ T cells. Zinc and selenium supplementation are a simple, low-cost, and safe nutritional treatment that represents a complementary intervention to improve the health status and increase the quality of life of clinically stable PLWHIV without metabolic diseases. Registered: Under ClinicalTrails.gov identifier NCT03421314
Project description:To study mixotrophy, it is desirable to have an organism capable of growth in the presence and absence of both organic and inorganic carbon sources, as well as organic and inorganic energy sources. Metallosphaera sedula is an extremely thermoacidophilic archaeon which has been shown to grow in the presence of inorganic carbon and energy source supplements (autotrophy), organic carbon and energy source supplements (heterotrophy), and in the presence of organic carbon and inorganic energy source supplements. The recent elucidation of M. sedula’s inorganic carbon fixation cycle and its genome sequence further facilitate its use in mixotrophic studies. In this study, we grow M. sedula heterotrophically in the presence of organic carbon and energy sources (0.1% tryptone), autotrophically in the presence of inorganic carbon and energy sources (H2 + CO2), and “mixotrophically” in the presence of both organic and inorganic carbon and energy sources (0.1% tryptone + H2 + CO2 ) to characterize the nature of mixotrophy exhibited.