Project description:Mitochondrial heteroplasmy, the presence of more than one mtDNA variant in a cell or individual is not as uncommon as previously thought. It is mostly due to the high mutation rate of the mtDNA and limited repair mechanisms present in the mitochondrion. The phenomenon has been studied mostly in human samples and in medical contexts. Heteroplasmy has also been researched in other species in fields such as forensics or genetic foot printing, but these studies usually focused on contained families within closely related species. Here we describe a large cross-species evaluation of heteroplasmy in mammals. We employed a novel approach to detect mitochondrial heteroplasmy in both novel and previously reported ChIP-sequencing datasets, which include concomitant mitochondrial DNA sequenced in the experiment. Here, we report novel ChIP-seq experiments for H3K4me1 and CEBPA across mammals, as well as some H3K4me3, H3K27ac and total histone H3 experiments. Most of the reported CEBPA experiments are good quality pull-downs, however the quality of many of the other experiments reported here has not been interrogated in detail. Whereas this does not affect the investigation of mitochondrial DNA pollution for the purposes of this study, both H3K4me1 and total histone H3 ChIP-seq datasets were often sequenced to relatively low depth and showed low ChIP enrichment compared to the other antibodies.
Project description:Mitochondria generate signals of adaptation that regulate nuclear genes expression via retrograde signaling. But this phenomenon is complexified when qualitatively different mitochondria and mitochondrial DNA (mtDNA) coexist within cells. Although this cellular state of heteroplasmy leads to divergent phenotypes clinically, its consequences on cellular function and the cellular transcriptome are unknown. To interrogate this phenomenon, we generated somatic cell cybrids harboring increasing levels of a common mtDNA mutation (tRNALeu(UUR) 3243A>G) and mapped the resulting cellular phenotypes and transcriptional profiles across the complete range of heteroplasmy. Small increases in mutant mtDNAs caused relatively modest defect in mitochondrial oxidative capacity, but resulted in sharp transitions in mitochondrial ultrastructure and in the nuclear and mitochondrial transcriptomes, with the critical functional threshold corresponding to the induction of epigenetic regulatory systems. Principal component analysis underscores how each heteroplasmy level occupies a different "transcriptional space", with low levels heteroplasmy (20-30%) producing a dose-response linear progression in one direction, and mutationload of 50, 60 and 90% producing changes in the opposite direction. Hence, subtle changes in mitochondrial energetics can act through the epigenome to generate the phenotypes of the common “complex” diseases. Cells were generated by transferring the wildtype (3243A) and mutant (3243G) mtDNAs from a heteroplasmic 3243A>G patient’s lymphoblastoid cell line into 143B(TK-) mtDNA-deficient (ρo) cells and selected for transmitochondrial cybrids. Subsequent mtDNA depletion, reamplification, and cloning (Wiseman and Attardi, 1978) resulted in a series of stable cybrids harboring approximately 0, 20, 30, 50, 60, 90, and 100% 3243G mutant mtDNAs. Total RNA extracted from each cell line was then extracted, depleted of rRNA, and measured in sequenced in triplicates.
Project description:Mitochondria generate signals of adaptation that regulate nuclear genes expression via retrograde signaling. But this phenomenon is complexified when qualitatively different mitochondria and mitochondrial DNA (mtDNA) coexist within cells. Although this cellular state of heteroplasmy leads to divergent phenotypes clinically, its consequences on cellular function and the cellular transcriptome are unknown. To interrogate this phenomenon, we generated somatic cell cybrids harboring increasing levels of a common mtDNA mutation (tRNALeu(UUR) 3243A>G) and mapped the resulting cellular phenotypes and transcriptional profiles across the complete range of heteroplasmy. Small increases in mutant mtDNAs caused relatively modest defect in mitochondrial oxidative capacity, but resulted in sharp transitions in mitochondrial ultrastructure and in the nuclear and mitochondrial transcriptomes, with the critical functional threshold corresponding to the induction of epigenetic regulatory systems. Principal component analysis underscores how each heteroplasmy level occupies a different "transcriptional space", with low levels heteroplasmy (20-30%) producing a dose-response linear progression in one direction, and mutationload of 50, 60 and 90% producing changes in the opposite direction. Hence, subtle changes in mitochondrial energetics can act through the epigenome to generate the phenotypes of the common “complex” diseases.
Project description:The mitochondrial m.3243A>G variant is known to cause retinal dystrophy and vision loss. We used mitochondria single cell ATAC sequencing to measure nuclear chromatin accessibility and mitochondrial heteroplasmy in single cells of the retina and choroid.
Project description:Mitochondrial DNA (mtDNA) 3243A>G tRNALeu(UUR) heteroplasmic mutation (m.3243A>G) exhibits clinically heterogeneous phenotypes. While the high mtDNA heteroplasmy exceeding a critical threshold causes mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome, the low mtDNA heteroplasmy causes maternally inherited diabetes with or without deafness (MIDD) syndrome. How quantitative differences in mtDNA heteroplasmy produces distinct pathological states has remained elusive. Here we show that despite striking similarities in the energy metabolic gene expression signature, the mitochondrial bioenergetics, biogenesis and fuel catabolic functions are distinct in cells harboring low or high levels of the m.3243A>G mutation compared to wild type cells. We further demonstrate that the low heteroplasmic mutant cells exhibit a coordinate induction of transcriptional regulators of the mitochondrial biogenesis, glucose and fatty acid metabolism pathways that lack in near homoplasmic mutant cells compared to wild type cells. Altogether, these results shed new biological insights on the potential mechanisms by which low mtDNA heteroplasmy may progressively cause diabetes mellitus.
Project description:Higher levels of the 12A heteroplasmy control mitochondrial function and metabolic pathway, consequently affecting the lifespan in mice.
Project description:Mitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle. Building on this, we hypothesized that targeting nuclear DNA methylation could selectively compromise cells with high levels of mutant mtDNA, favor ones with lower mutant load and thereby reduce overall heteroplasmy.
Project description:Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.