Project description:Multi-omics integration analysis of rumen microorganisms isolated from cows fed either an ad lib or restricted diet, and comparing this with methane emission rates for the cows.
2023-07-20 | PXD040349 | Pride
Project description:Enteric methane emission of dairy cows supplemented with iodoform in a dose-response study
Project description:The aim of this study was to determine the effects of linseed dietary supplementation on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in dairy cows supplemented with linseed. The linseed supplementation improves the health and nutrition quality aspects of dairy milk, but also affects the gene networks expression signature associated with cellular growth and proliferation, cell-death, signalling, nutrient metabolism, and immune response, and in turn, the mammary gland integrity and health.
Project description:The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows supplemented with different unsaturated fatty acids (UFA). The UFA supplementation improves the health and nutrition quality aspects of dairy milk, but also affects the gene networks expression signature associated with cellular growth and proliferation, cell-death, signalling, nutrient metabolism, and immune response, and in turn, the mammary gland integrity and health. SUBMITTER_CITATION: Mach, N., A. A. A. Jacobs, L. Kruijt, J. Van Baal, and M. A. Smits. 2011. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids. Animal.DOI:10.1017/S1751731111000103
Project description:The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows supplemented with different unsaturated fatty acids (UFA). The UFA supplementation improves the health and nutrition quality aspects of dairy milk, but also affects the gene networks expression signature associated with cellular growth and proliferation, cell-death, signalling, nutrient metabolism, and immune response, and in turn, the mammary gland integrity and health. A total of 28 Holstein-Friesian dairy cows in mid-lactation were blocked according to parity (2.4 ± 0.63 years), days in milk (DIM; 153 ± 32.8 days), milk yield (25.7 ± 3.08 kg/d) and fat content (4.3 ± 0.12%). Cows were then randomly assigned to four UFA-sources based on rapeseed, soybean, linseed or a mixture of the three oils for 23 days (Period I) after which, all 28 cows were switched to a control diet for an additional 28 days (Period II). On the last day of both periods, mammary gland biopsies were taken to study genome-wide differences in lipid metabolism gene expression.
Project description:M. Berg, J. Plöntzke, S. Leonhard-Marek, K.E. Müller & S. Röblitz. A dynamic model to simulate potassium balance in dairy cows. Journal of Dairy Science 100, 12 (2017).
High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.
Project description:To assess how different levels of stress exposure affect epigenetic regulation mechanisms in cattle, we investigated genome-wide DNA methylation in 20 Italian Red Pied dairy cows falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine biomarker of stress in dairy cows, measured in 126 animals belonging to the same farm in the framework of the Gen2Phen Italian project. The ‘low-’ and ‘high-cortisol’ groups of animals had MC<370 pg/ml and>810 pg/ml, respectively. Their methylome was analysed by Reduced Representation Bisulfite Sequencing, which provides single-base resolution methylation profiles across the whole genome. To date, 20 animals (10 low- and 10 high-MC) have been sequenced. The two groups showed similar proportion of methylation at CpG sites, while they differed at non-CpG sites. Significant methylation changes were observed in 897 regions and 248 genes. KEGG and Gene Ontology (GO) pathway analyses indicated that these genes were mainly involved in immune regulatory pathways, glucocorticoids metabolism and nervous system functions. These preliminary results suggest that cortisol secretion in livestock is mediated by epigenetic regulation, provide target biomarkers to assess the effect of stress management procedures and candidate genes for the selection of stress-tolerant animals.
Project description:The current situation of rising demand for animal products and sustainable resource usage, improving nutrient utilization efficiency in dairy cows is an important task. Understanding the biology of feed efficiency in dairy cows enables for the development of markers that may be used to identify and choose the best animals for animal production. Thus in this study, ten Holstein cows were evaluated for feed efficiency and adipose tissue samples from five high efficient and five low efficient dairy cows were collected for protein extraction, digestion and data were analyzed for differential abundant proteins enriched in feed efficiency pathways. Among the identified peptides, we found 110 DAPs and two protein networks significantly related to feed efficiency. Among the relative mRNA expression of genes involved in energy metabolism including transcription/translation (STAT2, DDX39A and RBM39) or protein transport (ITGAV), only RBM39 showed significant decrease in high efficient dairy cows. The findings presented here confirmed the Transferrin upregulated in pathways including acute phase response signaling, LXR/RXR activation, FXR/RXR activation of high efficient dairy cows supporting that these pathways are related to feed efficiency in dairy cows.
2022-08-12 | PXD029328 | Pride
Project description:Nordic Red dairy cows ruminal bacteria