Project description:In order to investigate the underlying mechanisms of PCB 153 mediated toxicity to Atlantic cod (Gadus morhua), we analyzed the liver proteome of fish exposed to various doses of PCB 153 (0, 0.5, 2 and 8mg/kg body weight) for two weeks and examined the effects on expression of liver proteins using quantitative proteomics. Label-free mass spectrometry enabled quantification of 1272 proteins, and 78 were differentially regulated between PCB 153 treated samples and controls. Two proteins downregulated due to PCB 153 treatment, Glutathione S-transferase theta 1 (GSTT1) and sulfotransferase family protein 1 (ST2B1), were verified using selected reaction monitoring (SRM). Supported by bioinformatics analyses, we concluded that PCB 153 perturbs lipid metabolism in the Atlantic cod liver and that increased levels of lipogenic enzymes indicate increased synthesis of fatty acids and triglycerides.
Project description:Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during central nervous system (CNS) development. Several transcription factors and microRNAs (miRNAs) are involved in the temporal regulation of NSPC differentiation. miRNA-153 (miR-153) as a modulator of NSPC specification. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro.
Project description:Genome-wide gene expression assay was used to map the genes affected in the liver of Atlantic cod treated with the persistent environmental pollutant polychlorinated biphenyl 153 (PCB 153) (0.5, 2 and 8 mg/kg body weight).