Project description:Eucalyptus urophylla is a commercially important wood crop plantation species due to its rapid growth, biomass yield, and use as bioenergy feedstock. We characterized the genetic diversity and population structure of 332 E. urophylla individuals from 19 geographically defined E. urophylla populations with a reliability of 14,468 single nucleotide polymorphisms (SNPs). We compared the patterns of genetic variation among these 19 populations. High levels of genetic diversity were observed throughout the 19 E. urophylla populations based on genome-wide SNP data (HE=0.2677 to 0.3487). Analysis with STRUCTURE software, Principal component analysis (PCA) and a neighbor-joining (NJ) tree indicated that E. urophylla populations could be divided into three groups, and moderate and weak population structure was observed with pairwise genetic differentiation (FST) values ranging from −0.09 to 0.074. The low genetic diversity and shallow genetic differentiation found within the 19 populations may be a consequence of their pollination system and seed dispersal mechanism. In addition, 55 core germplasms of E. urophylla were constructed according to the genetic marker data. The genome-wide SNPs we identified will provide a valuable resource for further genetic improvement and effective use of the germplasm resources.
Project description:In this study, we used an -omics approach coupled with high resolution mass spectrometry to characterize twenty F. graminearum isolates collected from five distinct regions across Manitoba, containing both 3-acetyl deoxynivalenol (3ADON) and 15-acetyl deoxynivalenol (15ADON) chemotypes. These data identified regional F. graminearum populations within Manitoba that demonstrate distinct genomic variation and patterns of gene expression, particularly within pathogenicity associated processes. Further, we identified genetic variation and differential expression between isolates showing high and low levels of pathogenicity, allowing for the identification of previously characterized and novel putative pathogenicity factors, as well as regions of genetic diversity between these groups. Lastly, we detected production of 3ANX and/or NX mycotoxins within the majority of our twenty characterized F. graminearum isolates, suggesting the 3ANX chemotype may be more prevalent than previously expected in Canada. These findings highlight the diversity of F. graminearum across Manitoba, and more importantly uncover specific genomic regions and candidate pathogenicity factors influenced by this diversity. These data can ultimately help researchers develop improved disease management strategies against FHB and the dynamic populations of F. graminearum.
Project description:The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million SNPs in 220 southern Africans and found that the Khoe-San diverged from other populations at least 100,000 years ago, but structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa, instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response, potential adaptive introgression of UV-light protection, and selection predating modern human diversification involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history .220 samples were analysed with the Illumina HumanOmni2.5-Quad BeadChip and are described herein.
Project description:ZIKV strains belong to three phylogenetic lineages: East African, West African, and Asian/American. RNA virus genomes exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. The genetic diversity of representative ZIKVs (N=7) from each lineage was examined using next generation sequencing (NGS) paired with downstream Shannon entropy calculation and single nucleotide variant (SNV) analysis. This comprehensive analysis of ZIKV genetic diversity provides insight into the genetic diversity of ZKIV and repository of SNV positions across lineages.
Project description:Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host?pathogen relationships. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set