Project description:Human trophoblast stem (TS) cells, which were established from blastocysts and first-trimester placental villi, can differentiate into the all trophoblastic subtypes, extravillous trophoblast (EVT) cells and syncytiotrophoblast (ST) cells. We newly generated human TS cells from the term smooth chorion (Ch-TS cells). They has the potential to differentiate into both ST and EVT cells as same as human TS cells derived from early placental villi. The transcriptomic profile of Ch-TS cells is also similar to conventional human TS cells.
Project description:Placental trophoblasts are key determinants of in utero development. Mouse trophoblast stem cells (mTSCs), which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and trophoblast fate determinants in the early-gestation placenta, amnion and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing FGF and an inhibitor of activin/nodal signaling, which is required for human embryonic SC self-renewal. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human trophoblast lineages—multinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic trophoblast progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2 and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth. TBPC colonies (3 biological replicates), TPBC monolayers (2 biological replicates), CTB (3 biological replicates), hESC (3 biological replicates)
Project description:We established an immortalized term placenta-derived trophoblast cell line and demonstrated functional and transcriptomic differences against chorion trophoblasts and BeWo cells.
Project description:Placental trophoblasts are key determinants of in utero development. Mouse trophoblast stem cells (mTSCs), which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and trophoblast fate determinants in the early-gestation placenta, amnion and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing FGF and an inhibitor of activin/nodal signaling, which is required for human embryonic SC self-renewal. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human trophoblast lineages—multinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic trophoblast progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2 and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth.
Project description:Preeclampsia (PE), which affects ~8% of first pregnancies, is associated with faulty placentation. Extravillous cytotrophoblasts (CTBs) fail to differentiate properly, contributing to shallow uterine invasion and deficient spiral artery remodeling. We studied the effects of severe PE (sPE) on the smooth chorion portion of the fetal membranes. The results showed a significant expansion of the CTB layer. The cells displayed enhanced expression of stage-specific antigens that extravillous CTBs normally up regulate as they exit the placenta. Transcriptomics revealed the dysregulated expression of many genes (e.g., placental proteins, markers of oxidative stress). We confirmed a sPE-related increase in production of PAPPA1, which releases IGF-1 from its binding protein. IGF1 enhanced proliferation of smooth chorion CTBs (schCTB), a possible explanation for expansion of this layer, which may partially compensate for the placental deficits.
Project description:Placental trophoblasts are key determinants of in utero development. Mouse trophoblast (TB) stem cells, which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here, we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and TB fate determinants in the early gestation placenta, amnion, and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing fibroblast growth factor which is required for human embryonic stem cell self-renewal, and an inhibitor of activin/nodal signaling. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human TB lineages-multinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic TB progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2, and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth.