Project description:Klebsiella pneumoniae is an important human pathogen, causing various infections. Apart from traditional virulence factors, there remains a significant gap in the discovery and research of new chromosomal virulence factors. CpxR is a two-component system (TCS) response regulator, but its impact on the virulence of Klebsiella pneumoniae have not been conclusively determined. For the effect of CpxR on K. pneumoniae virulence, the cpxR deletion(ΔcpxR) strain exhibited reduced serum resistance and attenuated pathogenicity in both Galleria mellonella larvae and mouse infection models compared to the wild-type strain. To identify CpxR-regulated virulence genes, RNA-seq analysis was conducted, followed by deletion of transcription downregulated genes in the ΔcpxR strain. Through serum resistance assays and Galleria mellonella infection experiments, a novel potential virulence factor, KPHS_28080, was identified. Deletion of KPHS_28080 impaired serum survival and proliferation in carbapenem-resistant strains HS11286 and hypervirulent strain ATCC 43816. Furthermore, the ATCC 43816 ΔKPHS_28080 strain showed significantly reduced colonization, proliferation, and multi-organ dissemination capacity in mice, accompanied by diminished pathogenicity. The KPHS_28080 promoter contains a conserved CpxR binding motif, where CpxR binding enhances promoter activity and elevates gene transcription. Sequence alignment revealed that KPHS_28080 is widely conserved across Klebsiella pneumoniae strains, establishing it as a novel chromosome-encoded virulence factor. These results provide a new insight into the CpxR regulation of K. pneumoniae virulence and chromosomal virulence factors.
Project description:To investigate the role of outer membrane vesicles (OMVs) and related proteins in iron acquisition mechanism of hypervirulent Klebsiella pneumoniae (HVKP) and classic Klebsiella pneumoniae (cKP).
Project description:CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials against multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae. Comparing different Cas nucleases, we found that AsCas12a exhibited robust targeting across different strains. The elucidated modes of escape from this nuclease varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains. The differences were attributed to improper RNA folding, leading to inefficient DNA cleavage and subsequent repair via homologous recombination. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.
Project description:Streptococcus pneumoniae (the pneumococcus) account for significant morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteremia and meningitis. In this study, we used microarray analysis to compare gene expression patterns of either serotype 4 or serotype 6A pneumococci in the nasopharynx and blood of mice, as a model to identify genes involved in invasion of blood in the context of occult bacteremia in humans.