Project description:The efficacy of chimeric antigen receptor (CAR) T cell therapy in solid tumors is limited by immunosuppression and antigen heterogeneity. To overcome these barriers, “armored” CAR T cells, which secrete proinflammatory cytokines, have been developed. However, their clinical application has been limited due to toxicities related to peripheral expression of the armoring transgene. Here, we developed a CRISPR knock-in strategy that leverages the regulatory mechanisms of endogenous genes to drive transgene expression in a tumor-localized manner. By screening endogenous genes with tumor-restricted expression, the NR4A2 and RGS16 promoters were identified to support the delivery of cytokines such as IL-12 and IL-2 directly to the tumor site, leading to enhanced anti-tumor efficacy and long-term survival of mice in both syngeneic and xenogeneic models. This was concomitant with improved CAR T cell polyfunctionality, activation of endogenous anti-tumor immunity, a favorable safety profile, and was applicable using CAR T cells from patients.
Project description:Although chimeric antigen receptor (CAR) T cells have shown impressive clinical success against haematological malignancies such as B cell lymphoma and acute lymphoblastic leukaemia, their efficacy against non-haematological solid malignancies has been largely disappointing. Solid tumours pose many additional challenges for CAR T cells that have severely blunted their potency, including homing to the sites of disease, survival and persistence within the adverse conditions of the tumour microenvironment, and above all, the highly immunosuppressive nature of the tumour milieu. Gene engineering approaches for generating immune cells capable of overcoming these hurdles remain an unmet therapeutic need and ongoing area of research. Recent advances have involved gene constructs for membrane-bound and/or secretable proteins that provide added effector cell function over and above the benefits of classical CAR-mediated cytotoxicity, rendering immune cells not only as direct cytotoxic effectors against tumours, but also as vessels for payload delivery capable of both modulating the tumour microenvironment and orchestrating innate and adaptive anti-tumour immunity. We discuss here the novel concept of engineered immune cells as vessels for payload delivery into the tumour microenvironment, how these cells are better adapted to overcome the challenges faced in a solid tumour, and importantly, the novel gene engineering approaches required to deliver these more complex polycistronic gene constructs.
Project description:Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TV^CD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATV^CD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATV^CD98hc that impact FcgR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TV^CD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.
Project description:Viruses and virally-derived particles have the intrinsic capacity to deliver molecules to cells, but the difficulty of readily altering cell-type selectivity has hindered their use for therapeutic delivery. Here we show that cell surface marker recognition by antibody fragments displayed on membrane-derived particles encapsulating CRISPR-Cas9 protein and guide RNA can target genome editing tools to specific cells. These Cas9-packaging enveloped delivery vehicles (Cas9-EDVs), programmed with different displayed antibody fragments, confer genome editing in target cells over bystander cells in mixed cell populations both ex vivo and in vivo. This strategy enabled the generation of genome-edited chimeric antigen receptor (CAR) T cells in humanized mice, establishing a new programmable delivery modality with the potential for widespread therapeutic utility.
Project description:We generated cell lines from LX-2 hepatic stellate cells that are otpimzed for intranasal delivery of the oncolytic adenovirus XVir-N-31 to treat glioblastoma. One cell line migrates faster, the next in addition expressed HSV-TK as a safety gene to eliminate cells in case of adverse events.
Project description:safety versus fear conditioning. Mice were trained with 4 unpaired (Safety) or paired (Fear) CS-US presentations over 3 days. Mice were killed by decapitation 4hrs after the last training session.