Project description:Resistance to herbicides in weeds can be due to alteration(s) in the gene encoding the herbicide target site, or to herbicide degradation via a deviation in plant general metabolism. If target-site-based resistance is easy to study, the multigenic control of metabolism-based resistance renders it much more complex to study. Metabolism-based resistance to herbicides represents the major part of herbicide resistance in black-grass. Its most likely basis is an overexpression of genes encoding enzymes degrading herbicides. We thus seek to identify such overexpressed genes by comparing the transcriptomes of resistant and sensitive black-grass individuals belonging to an F2 line segregating for two resistance genes. Given there are no genomic tools developed for black-grass, this approach will use heterologous hybridisation onto a wheat Affymetrix microarray. Comparison using heterologous hybridisation onto a wheat whole-genome microarray of transcriptome of three pools of black-grass plants obtained 2h30 after herbicide spraying at field rate. The three pools correspond to: · Sensitive plants (killed by herbicide). · Moderately resistant plants (growth impaired by herbicide but plants still alive) · Resistant plants (growth unimpaired by herbicide) 6 arrays - wheat
Project description:Resistance to herbicides in weeds can be due to alteration(s) in the gene encoding the herbicide target site, or to herbicide degradation via a deviation in plant general metabolism. If target-site-based resistance is easy to study, the multigenic control of metabolism-based resistance renders it much more complex to study. Metabolism-based resistance to herbicides represents the major part of herbicide resistance in black-grass. Its most likely basis is an overexpression of genes encoding enzymes degrading herbicides. We thus seek to identify such overexpressed genes by comparing the transcriptomes of resistant and sensitive black-grass individuals belonging to an F2 line segregating for two resistance genes. Given there are no genomic tools developed for black-grass, this approach will use heterologous hybridisation onto a wheat Affymetrix microarray. Comparison using heterologous hybridisation onto a wheat whole-genome microarray of transcriptome of three pools of black-grass plants obtained 2h30 after herbicide spraying at field rate. The three pools correspond to: · Sensitive plants (killed by herbicide). · Moderately resistant plants (growth impaired by herbicide but plants still alive) · Resistant plants (growth unimpaired by herbicide)
Project description:Background: The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. Results: The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. Conclusion: The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses.
Project description:Background: The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. Results: The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. Conclusion: The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses.
2023-04-22 | GSE204788 | GEO
Project description:Transcriptome sequencing of Echinochloa colona
Project description:Identification and characterization of genes and target-site mutations associated with beta-cypermethrin resistance in Aphis gossypii Glover collected from a Chinese wolfberry (Lycium barbarum L.) field. we collected a beta-cypermethrin resistant A. gossypii strain (HSP) from a Chinese wolf-berry orchard in a major growing area of Ningxia wolfberry (Wuzhong city). Subsequently, to elucidate the potential roles of P450s, CarEs and GSTs in beta-cypermethrin resistance in the A. gossypii strain, we performed synergistic bioassays, as well as enzyme activity assays, to confirm their effects. Further, we carried out a comparative transcriptome anal-ysis to identified the overexpression of detoxification enzyme genes associated with the beta-cypermethrin resistance. According to the transcriptome variations, we also meas-ured the expression levels of the upregulated P450s genes involved in beta-cypermethrin resistance in the A. gossypii resistant strain, using a quantitative real-time PCR assay. Moreover, the potential mutations in VGSC genes and their frequencies were detected to reveal the VGSC genotype of the resistant strain.